Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
|
2 |
|
cphipcj.v |
|
3 |
|
cphsubdir.m |
|
4 |
|
cph2subdi.1 |
|
5 |
|
cph2subdi.2 |
|
6 |
|
cph2subdi.3 |
|
7 |
|
cph2subdi.4 |
|
8 |
|
cph2subdi.5 |
|
9 |
|
cphclm |
|
10 |
4 9
|
syl |
|
11 |
|
eqid |
|
12 |
11
|
clmadd |
|
13 |
10 12
|
syl |
|
14 |
13
|
oveqd |
|
15 |
13
|
oveqd |
|
16 |
14 15
|
oveq12d |
|
17 |
|
cphphl |
|
18 |
4 17
|
syl |
|
19 |
|
eqid |
|
20 |
11 1 2 19
|
ipcl |
|
21 |
18 5 7 20
|
syl3anc |
|
22 |
11 1 2 19
|
ipcl |
|
23 |
18 6 8 22
|
syl3anc |
|
24 |
11 19
|
clmacl |
|
25 |
10 21 23 24
|
syl3anc |
|
26 |
11 1 2 19
|
ipcl |
|
27 |
18 5 8 26
|
syl3anc |
|
28 |
11 1 2 19
|
ipcl |
|
29 |
18 6 7 28
|
syl3anc |
|
30 |
11 19
|
clmacl |
|
31 |
10 27 29 30
|
syl3anc |
|
32 |
11 19
|
clmsub |
|
33 |
10 25 31 32
|
syl3anc |
|
34 |
|
eqid |
|
35 |
|
eqid |
|
36 |
11 1 2 3 34 35 18 5 6 7 8
|
ip2subdi |
|
37 |
16 33 36
|
3eqtr4rd |
|