Metamath Proof Explorer


Theorem cphabscl

Description: The scalar field of a subcomplex pre-Hilbert space is closed under the absolute value operation. (Contributed by Mario Carneiro, 11-Oct-2015)

Ref Expression
Hypotheses cphsca.f F = Scalar W
cphsca.k K = Base F
Assertion cphabscl W CPreHil A K A K

Proof

Step Hyp Ref Expression
1 cphsca.f F = Scalar W
2 cphsca.k K = Base F
3 1 2 cphsubrg W CPreHil K SubRing fld
4 cnfldbas = Base fld
5 4 subrgss K SubRing fld K
6 3 5 syl W CPreHil K
7 6 sselda W CPreHil A K A
8 absval A A = A A
9 7 8 syl W CPreHil A K A = A A
10 simpl W CPreHil A K W CPreHil
11 3 adantr W CPreHil A K K SubRing fld
12 simpr W CPreHil A K A K
13 1 2 cphcjcl W CPreHil A K A K
14 cnfldmul × = fld
15 14 subrgmcl K SubRing fld A K A K A A K
16 11 12 13 15 syl3anc W CPreHil A K A A K
17 7 cjmulrcld W CPreHil A K A A
18 7 cjmulge0d W CPreHil A K 0 A A
19 1 2 cphsqrtcl W CPreHil A A K A A 0 A A A A K
20 10 16 17 18 19 syl13anc W CPreHil A K A A K
21 9 20 eqeltrd W CPreHil A K A K