Metamath Proof Explorer


Theorem cphassir

Description: "Associative" law for the second argument of an inner product with scalar _ i . (Contributed by AV, 17-Oct-2021)

Ref Expression
Hypotheses cphassi.x X = Base W
cphassi.s · ˙ = W
cphassi.i , ˙ = 𝑖 W
cphassi.f F = Scalar W
cphassi.k K = Base F
Assertion cphassir W CPreHil i K A X B X A , ˙ i · ˙ B = i A , ˙ B

Proof

Step Hyp Ref Expression
1 cphassi.x X = Base W
2 cphassi.s · ˙ = W
3 cphassi.i , ˙ = 𝑖 W
4 cphassi.f F = Scalar W
5 cphassi.k K = Base F
6 simp1l W CPreHil i K A X B X W CPreHil
7 simp1r W CPreHil i K A X B X i K
8 simp2 W CPreHil i K A X B X A X
9 simp3 W CPreHil i K A X B X B X
10 3 1 4 5 2 cphassr W CPreHil i K A X B X A , ˙ i · ˙ B = i A , ˙ B
11 6 7 8 9 10 syl13anc W CPreHil i K A X B X A , ˙ i · ˙ B = i A , ˙ B
12 cji i = i
13 12 oveq1i i A , ˙ B = i A , ˙ B
14 11 13 eqtrdi W CPreHil i K A X B X A , ˙ i · ˙ B = i A , ˙ B