Metamath Proof Explorer


Theorem cphassr

Description: "Associative" law for second argument of inner product (compare cphass ). See ipassr , his52 . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h , ˙ = 𝑖 W
cphipcj.v V = Base W
cphass.f F = Scalar W
cphass.k K = Base F
cphass.s · ˙ = W
Assertion cphassr W CPreHil A K B V C V B , ˙ A · ˙ C = A B , ˙ C

Proof

Step Hyp Ref Expression
1 cphipcj.h , ˙ = 𝑖 W
2 cphipcj.v V = Base W
3 cphass.f F = Scalar W
4 cphass.k K = Base F
5 cphass.s · ˙ = W
6 cphclm W CPreHil W CMod
7 6 adantr W CPreHil A K B V C V W CMod
8 3 clmmul W CMod × = F
9 7 8 syl W CPreHil A K B V C V × = F
10 eqidd W CPreHil A K B V C V B , ˙ C = B , ˙ C
11 3 clmcj W CMod * = * F
12 7 11 syl W CPreHil A K B V C V * = * F
13 12 fveq1d W CPreHil A K B V C V A = A * F
14 9 10 13 oveq123d W CPreHil A K B V C V B , ˙ C A = B , ˙ C F A * F
15 3 4 clmsscn W CMod K
16 7 15 syl W CPreHil A K B V C V K
17 simpr1 W CPreHil A K B V C V A K
18 16 17 sseldd W CPreHil A K B V C V A
19 18 cjcld W CPreHil A K B V C V A
20 2 1 cphipcl W CPreHil B V C V B , ˙ C
21 20 3adant3r1 W CPreHil A K B V C V B , ˙ C
22 19 21 mulcomd W CPreHil A K B V C V A B , ˙ C = B , ˙ C A
23 cphphl W CPreHil W PreHil
24 3anrot A K B V C V B V C V A K
25 24 biimpi A K B V C V B V C V A K
26 eqid F = F
27 eqid * F = * F
28 3 1 2 4 5 26 27 ipassr W PreHil B V C V A K B , ˙ A · ˙ C = B , ˙ C F A * F
29 23 25 28 syl2an W CPreHil A K B V C V B , ˙ A · ˙ C = B , ˙ C F A * F
30 14 22 29 3eqtr4rd W CPreHil A K B V C V B , ˙ A · ˙ C = A B , ˙ C