Description: "Associative" law for second argument of inner product (compare cphass ). See ipassr , his52 . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | |
|
| cphipcj.v | |
||
| cphass.f | |
||
| cphass.k | |
||
| cphass.s | |
||
| Assertion | cphassr | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | |
|
| 2 | cphipcj.v | |
|
| 3 | cphass.f | |
|
| 4 | cphass.k | |
|
| 5 | cphass.s | |
|
| 6 | cphclm | |
|
| 7 | 6 | adantr | |
| 8 | 3 | clmmul | |
| 9 | 7 8 | syl | |
| 10 | eqidd | |
|
| 11 | 3 | clmcj | |
| 12 | 7 11 | syl | |
| 13 | 12 | fveq1d | |
| 14 | 9 10 13 | oveq123d | |
| 15 | 3 4 | clmsscn | |
| 16 | 7 15 | syl | |
| 17 | simpr1 | |
|
| 18 | 16 17 | sseldd | |
| 19 | 18 | cjcld | |
| 20 | 2 1 | cphipcl | |
| 21 | 20 | 3adant3r1 | |
| 22 | 19 21 | mulcomd | |
| 23 | cphphl | |
|
| 24 | 3anrot | |
|
| 25 | 24 | biimpi | |
| 26 | eqid | |
|
| 27 | eqid | |
|
| 28 | 3 1 2 4 5 26 27 | ipassr | |
| 29 | 23 25 28 | syl2an | |
| 30 | 14 22 29 | 3eqtr4rd | |