Metamath Proof Explorer


Theorem cphcjcl

Description: The scalar field of a subcomplex pre-Hilbert space is closed under conjugation. (Contributed by Mario Carneiro, 11-Oct-2015)

Ref Expression
Hypotheses cphsca.f F = Scalar W
cphsca.k K = Base F
Assertion cphcjcl W CPreHil A K A K

Proof

Step Hyp Ref Expression
1 cphsca.f F = Scalar W
2 cphsca.k K = Base F
3 1 2 cphsca W CPreHil F = fld 𝑠 K
4 3 fveq2d W CPreHil * F = * fld 𝑠 K
5 2 fvexi K V
6 eqid fld 𝑠 K = fld 𝑠 K
7 cnfldcj * = * fld
8 6 7 ressstarv K V * = * fld 𝑠 K
9 5 8 ax-mp * = * fld 𝑠 K
10 4 9 eqtr4di W CPreHil * F = *
11 10 adantr W CPreHil A K * F = *
12 11 fveq1d W CPreHil A K A * F = A
13 cphphl W CPreHil W PreHil
14 1 phlsrng W PreHil F *-Ring
15 13 14 syl W CPreHil F *-Ring
16 eqid * F = * F
17 16 2 srngcl F *-Ring A K A * F K
18 15 17 sylan W CPreHil A K A * F K
19 12 18 eqeltrrd W CPreHil A K A K