Metamath Proof Explorer


Theorem cphclm

Description: A subcomplex pre-Hilbert space is a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion cphclm W CPreHil W CMod

Proof

Step Hyp Ref Expression
1 cphlmod W CPreHil W LMod
2 eqid Scalar W = Scalar W
3 eqid Base Scalar W = Base Scalar W
4 2 3 cphsca W CPreHil Scalar W = fld 𝑠 Base Scalar W
5 2 3 cphsubrg W CPreHil Base Scalar W SubRing fld
6 2 3 isclm W CMod W LMod Scalar W = fld 𝑠 Base Scalar W Base Scalar W SubRing fld
7 1 4 5 6 syl3anbrc W CPreHil W CMod