Metamath Proof Explorer


Theorem cphdir

Description: Distributive law for inner product (right-distributivity). Equation I3 of Ponnusamy p. 362. Complex version of ipdir . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h , ˙ = 𝑖 W
cphipcj.v V = Base W
cphdir.P + ˙ = + W
Assertion cphdir W CPreHil A V B V C V A + ˙ B , ˙ C = A , ˙ C + B , ˙ C

Proof

Step Hyp Ref Expression
1 cphipcj.h , ˙ = 𝑖 W
2 cphipcj.v V = Base W
3 cphdir.P + ˙ = + W
4 cphphl W CPreHil W PreHil
5 eqid Scalar W = Scalar W
6 eqid + Scalar W = + Scalar W
7 5 1 2 3 6 ipdir W PreHil A V B V C V A + ˙ B , ˙ C = A , ˙ C + Scalar W B , ˙ C
8 4 7 sylan W CPreHil A V B V C V A + ˙ B , ˙ C = A , ˙ C + Scalar W B , ˙ C
9 cphclm W CPreHil W CMod
10 5 clmadd W CMod + = + Scalar W
11 9 10 syl W CPreHil + = + Scalar W
12 11 adantr W CPreHil A V B V C V + = + Scalar W
13 12 oveqd W CPreHil A V B V C V A , ˙ C + B , ˙ C = A , ˙ C + Scalar W B , ˙ C
14 8 13 eqtr4d W CPreHil A V B V C V A + ˙ B , ˙ C = A , ˙ C + B , ˙ C