Metamath Proof Explorer


Theorem cphipcl

Description: An inner product is a member of the complex numbers. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses nmsq.v V = Base W
nmsq.h , ˙ = 𝑖 W
Assertion cphipcl W CPreHil A V B V A , ˙ B

Proof

Step Hyp Ref Expression
1 nmsq.v V = Base W
2 nmsq.h , ˙ = 𝑖 W
3 eqid Scalar W = Scalar W
4 eqid Base Scalar W = Base Scalar W
5 3 4 cphsubrg W CPreHil Base Scalar W SubRing fld
6 cnfldbas = Base fld
7 6 subrgss Base Scalar W SubRing fld Base Scalar W
8 5 7 syl W CPreHil Base Scalar W
9 8 3ad2ant1 W CPreHil A V B V Base Scalar W
10 cphphl W CPreHil W PreHil
11 3 2 1 4 ipcl W PreHil A V B V A , ˙ B Base Scalar W
12 10 11 syl3an1 W CPreHil A V B V A , ˙ B Base Scalar W
13 9 12 sseldd W CPreHil A V B V A , ˙ B