Metamath Proof Explorer


Theorem cphipipcj

Description: An inner product times its conjugate. (Contributed by NM, 23-Nov-2007) (Revised by AV, 19-Oct-2021)

Ref Expression
Hypotheses cphipcj.h , ˙ = 𝑖 W
cphipcj.v V = Base W
Assertion cphipipcj W CPreHil A V B V A , ˙ B B , ˙ A = A , ˙ B 2

Proof

Step Hyp Ref Expression
1 cphipcj.h , ˙ = 𝑖 W
2 cphipcj.v V = Base W
3 2 1 cphipcl W CPreHil A V B V A , ˙ B
4 absval A , ˙ B A , ˙ B = A , ˙ B A , ˙ B
5 3 4 syl W CPreHil A V B V A , ˙ B = A , ˙ B A , ˙ B
6 5 oveq1d W CPreHil A V B V A , ˙ B 2 = A , ˙ B A , ˙ B 2
7 3 cjcld W CPreHil A V B V A , ˙ B
8 3 7 mulcld W CPreHil A V B V A , ˙ B A , ˙ B
9 8 sqsqrtd W CPreHil A V B V A , ˙ B A , ˙ B 2 = A , ˙ B A , ˙ B
10 1 2 cphipcj W CPreHil A V B V A , ˙ B = B , ˙ A
11 10 oveq2d W CPreHil A V B V A , ˙ B A , ˙ B = A , ˙ B B , ˙ A
12 6 9 11 3eqtrrd W CPreHil A V B V A , ˙ B B , ˙ A = A , ˙ B 2