| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphipfval.x |
|
| 2 |
|
cphipfval.p |
|
| 3 |
|
cphipfval.s |
|
| 4 |
|
cphipfval.n |
|
| 5 |
|
cphipfval.i |
|
| 6 |
|
cphipval2.m |
|
| 7 |
|
cphipval2.f |
|
| 8 |
|
cphipval2.k |
|
| 9 |
|
simpl |
|
| 10 |
9
|
3ad2ant1 |
|
| 11 |
|
cphngp |
|
| 12 |
11
|
adantr |
|
| 13 |
|
ngpgrp |
|
| 14 |
12 13
|
syl |
|
| 15 |
1 2
|
grpcl |
|
| 16 |
14 15
|
syl3an1 |
|
| 17 |
1 5 4
|
nmsq |
|
| 18 |
10 16 17
|
syl2anc |
|
| 19 |
|
simp2 |
|
| 20 |
|
simp3 |
|
| 21 |
5 1 2 10 19 20 19 20
|
cph2di |
|
| 22 |
18 21
|
eqtrd |
|
| 23 |
1 6
|
grpsubcl |
|
| 24 |
14 23
|
syl3an1 |
|
| 25 |
1 5 4
|
nmsq |
|
| 26 |
10 24 25
|
syl2anc |
|
| 27 |
5 1 6 10 19 20 19 20
|
cph2subdi |
|
| 28 |
26 27
|
eqtrd |
|
| 29 |
22 28
|
oveq12d |
|
| 30 |
1 5
|
reipcl |
|
| 31 |
30
|
adantlr |
|
| 32 |
31
|
recnd |
|
| 33 |
32
|
3adant3 |
|
| 34 |
1 5
|
reipcl |
|
| 35 |
34
|
adantlr |
|
| 36 |
35
|
recnd |
|
| 37 |
36
|
3adant2 |
|
| 38 |
33 37
|
addcld |
|
| 39 |
1 5
|
cphipcl |
|
| 40 |
9 39
|
syl3an1 |
|
| 41 |
1 5
|
cphipcl |
|
| 42 |
9 41
|
syl3an1 |
|
| 43 |
42
|
3com23 |
|
| 44 |
40 43
|
addcld |
|
| 45 |
38 44 44
|
pnncand |
|
| 46 |
29 45
|
eqtrd |
|
| 47 |
14
|
3ad2ant1 |
|
| 48 |
|
cphlmod |
|
| 49 |
48
|
adantr |
|
| 50 |
49
|
adantr |
|
| 51 |
|
simplr |
|
| 52 |
|
simpr |
|
| 53 |
1 7 3 8
|
lmodvscl |
|
| 54 |
50 51 52 53
|
syl3anc |
|
| 55 |
54
|
3adant2 |
|
| 56 |
1 2
|
grpcl |
|
| 57 |
47 19 55 56
|
syl3anc |
|
| 58 |
1 5 4
|
nmsq |
|
| 59 |
10 57 58
|
syl2anc |
|
| 60 |
5 1 2 10 19 55 19 55
|
cph2di |
|
| 61 |
59 60
|
eqtrd |
|
| 62 |
1 6
|
grpsubcl |
|
| 63 |
47 19 55 62
|
syl3anc |
|
| 64 |
1 5 4
|
nmsq |
|
| 65 |
10 63 64
|
syl2anc |
|
| 66 |
5 1 6 10 19 55 19 55
|
cph2subdi |
|
| 67 |
65 66
|
eqtrd |
|
| 68 |
61 67
|
oveq12d |
|
| 69 |
68
|
oveq2d |
|
| 70 |
1 5
|
cphipcl |
|
| 71 |
10 55 55 70
|
syl3anc |
|
| 72 |
33 71
|
addcld |
|
| 73 |
1 5
|
cphipcl |
|
| 74 |
10 19 55 73
|
syl3anc |
|
| 75 |
1 5
|
cphipcl |
|
| 76 |
10 55 19 75
|
syl3anc |
|
| 77 |
74 76
|
addcld |
|
| 78 |
72 77 77
|
pnncand |
|
| 79 |
78
|
oveq2d |
|
| 80 |
1 3 5 7 8
|
cphassir |
|
| 81 |
1 3 5 7 8
|
cphassi |
|
| 82 |
80 81
|
oveq12d |
|
| 83 |
82 82
|
oveq12d |
|
| 84 |
83
|
oveq2d |
|
| 85 |
|
ax-icn |
|
| 86 |
85
|
a1i |
|
| 87 |
|
negicn |
|
| 88 |
87
|
a1i |
|
| 89 |
88 40
|
mulcld |
|
| 90 |
86 43
|
mulcld |
|
| 91 |
89 90
|
addcld |
|
| 92 |
86 91 91
|
adddid |
|
| 93 |
86 89 90
|
adddid |
|
| 94 |
86 88 40
|
mulassd |
|
| 95 |
85 85
|
mulneg2i |
|
| 96 |
|
ixi |
|
| 97 |
96
|
negeqi |
|
| 98 |
|
negneg1e1 |
|
| 99 |
95 97 98
|
3eqtri |
|
| 100 |
99
|
oveq1i |
|
| 101 |
94 100
|
eqtr3di |
|
| 102 |
86 86 43
|
mulassd |
|
| 103 |
96
|
oveq1i |
|
| 104 |
102 103
|
eqtr3di |
|
| 105 |
101 104
|
oveq12d |
|
| 106 |
93 105
|
eqtrd |
|
| 107 |
106 106
|
oveq12d |
|
| 108 |
40
|
mullidd |
|
| 109 |
108
|
oveq1d |
|
| 110 |
|
addneg1mul |
|
| 111 |
40 43 110
|
syl2anc |
|
| 112 |
109 111
|
eqtrd |
|
| 113 |
112 112
|
oveq12d |
|
| 114 |
107 113
|
eqtrd |
|
| 115 |
84 92 114
|
3eqtrd |
|
| 116 |
69 79 115
|
3eqtrd |
|
| 117 |
46 116
|
oveq12d |
|
| 118 |
117
|
oveq1d |
|
| 119 |
40 43
|
subcld |
|
| 120 |
44 44 119 119
|
add4d |
|
| 121 |
40 43 40
|
ppncand |
|
| 122 |
121 121
|
oveq12d |
|
| 123 |
120 122
|
eqtrd |
|
| 124 |
123
|
oveq1d |
|
| 125 |
40
|
2timesd |
|
| 126 |
125
|
eqcomd |
|
| 127 |
126 126
|
oveq12d |
|
| 128 |
|
2cnd |
|
| 129 |
128 128 40
|
adddird |
|
| 130 |
|
2p2e4 |
|
| 131 |
130
|
a1i |
|
| 132 |
131
|
oveq1d |
|
| 133 |
127 129 132
|
3eqtr2d |
|
| 134 |
133
|
oveq1d |
|
| 135 |
|
4cn |
|
| 136 |
135
|
a1i |
|
| 137 |
|
4ne0 |
|
| 138 |
137
|
a1i |
|
| 139 |
40 136 138
|
divcan3d |
|
| 140 |
134 139
|
eqtrd |
|
| 141 |
118 124 140
|
3eqtrrd |
|