Metamath Proof Explorer


Theorem cphnlm

Description: A subcomplex pre-Hilbert space is a normed module. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Assertion cphnlm W CPreHil W NrmMod

Proof

Step Hyp Ref Expression
1 eqid Base W = Base W
2 eqid 𝑖 W = 𝑖 W
3 eqid norm W = norm W
4 eqid Scalar W = Scalar W
5 eqid Base Scalar W = Base Scalar W
6 1 2 3 4 5 iscph W CPreHil W PreHil W NrmMod Scalar W = fld 𝑠 Base Scalar W Base Scalar W 0 +∞ Base Scalar W norm W = x Base W x 𝑖 W x
7 6 simp1bi W CPreHil W PreHil W NrmMod Scalar W = fld 𝑠 Base Scalar W
8 7 simp2d W CPreHil W NrmMod