Metamath Proof Explorer


Theorem cphnm

Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses nmsq.v V = Base W
nmsq.h , ˙ = 𝑖 W
nmsq.n N = norm W
Assertion cphnm W CPreHil A V N A = A , ˙ A

Proof

Step Hyp Ref Expression
1 nmsq.v V = Base W
2 nmsq.h , ˙ = 𝑖 W
3 nmsq.n N = norm W
4 1 2 3 cphnmfval W CPreHil N = x V x , ˙ x
5 4 fveq1d W CPreHil N A = x V x , ˙ x A
6 oveq12 x = A x = A x , ˙ x = A , ˙ A
7 6 anidms x = A x , ˙ x = A , ˙ A
8 7 fveq2d x = A x , ˙ x = A , ˙ A
9 eqid x V x , ˙ x = x V x , ˙ x
10 fvex A , ˙ A V
11 8 9 10 fvmpt A V x V x , ˙ x A = A , ˙ A
12 5 11 sylan9eq W CPreHil A V N A = A , ˙ A