Metamath Proof Explorer


Theorem cphnmf

Description: The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015)

Ref Expression
Hypotheses nmsq.v V = Base W
nmsq.h , ˙ = 𝑖 W
nmsq.n N = norm W
cphnmcl.f F = Scalar W
cphnmcl.k K = Base F
Assertion cphnmf W CPreHil N : V K

Proof

Step Hyp Ref Expression
1 nmsq.v V = Base W
2 nmsq.h , ˙ = 𝑖 W
3 nmsq.n N = norm W
4 cphnmcl.f F = Scalar W
5 cphnmcl.k K = Base F
6 1 2 3 cphnmfval W CPreHil N = x V x , ˙ x
7 simpl W CPreHil x V W CPreHil
8 cphphl W CPreHil W PreHil
9 8 adantr W CPreHil x V W PreHil
10 simpr W CPreHil x V x V
11 4 2 1 5 ipcl W PreHil x V x V x , ˙ x K
12 9 10 10 11 syl3anc W CPreHil x V x , ˙ x K
13 1 2 3 nmsq W CPreHil x V N x 2 = x , ˙ x
14 cphngp W CPreHil W NrmGrp
15 1 3 nmcl W NrmGrp x V N x
16 14 15 sylan W CPreHil x V N x
17 16 resqcld W CPreHil x V N x 2
18 13 17 eqeltrrd W CPreHil x V x , ˙ x
19 16 sqge0d W CPreHil x V 0 N x 2
20 19 13 breqtrd W CPreHil x V 0 x , ˙ x
21 4 5 cphsqrtcl W CPreHil x , ˙ x K x , ˙ x 0 x , ˙ x x , ˙ x K
22 7 12 18 20 21 syl13anc W CPreHil x V x , ˙ x K
23 6 22 fmpt3d W CPreHil N : V K