Metamath Proof Explorer


Theorem cphnmvs

Description: Norm of a scalar product. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphnmvs.v V = Base W
cphnmvs.n N = norm W
cphnmvs.s · ˙ = W
cphnmvs.f F = Scalar W
cphnmvs.k K = Base F
Assertion cphnmvs W CPreHil X K Y V N X · ˙ Y = X N Y

Proof

Step Hyp Ref Expression
1 cphnmvs.v V = Base W
2 cphnmvs.n N = norm W
3 cphnmvs.s · ˙ = W
4 cphnmvs.f F = Scalar W
5 cphnmvs.k K = Base F
6 cphnlm W CPreHil W NrmMod
7 eqid norm F = norm F
8 1 2 3 4 5 7 nmvs W NrmMod X K Y V N X · ˙ Y = norm F X N Y
9 6 8 syl3an1 W CPreHil X K Y V N X · ˙ Y = norm F X N Y
10 cphclm W CPreHil W CMod
11 4 5 clmabs W CMod X K X = norm F X
12 10 11 sylan W CPreHil X K X = norm F X
13 12 3adant3 W CPreHil X K Y V X = norm F X
14 13 oveq1d W CPreHil X K Y V X N Y = norm F X N Y
15 9 14 eqtr4d W CPreHil X K Y V N X · ˙ Y = X N Y