Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Subcomplex pre-Hilbert spaces
cphnmvs
Next ⟩
cphipcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
cphnmvs
Description:
Norm of a scalar product.
(Contributed by
Mario Carneiro
, 16-Oct-2015)
Ref
Expression
Hypotheses
cphnmvs.v
⊢
V
=
Base
W
cphnmvs.n
⊢
N
=
norm
⁡
W
cphnmvs.s
⊢
·
˙
=
⋅
W
cphnmvs.f
⊢
F
=
Scalar
⁡
W
cphnmvs.k
⊢
K
=
Base
F
Assertion
cphnmvs
⊢
W
∈
CPreHil
∧
X
∈
K
∧
Y
∈
V
→
N
⁡
X
·
˙
Y
=
X
⁢
N
⁡
Y
Proof
Step
Hyp
Ref
Expression
1
cphnmvs.v
⊢
V
=
Base
W
2
cphnmvs.n
⊢
N
=
norm
⁡
W
3
cphnmvs.s
⊢
·
˙
=
⋅
W
4
cphnmvs.f
⊢
F
=
Scalar
⁡
W
5
cphnmvs.k
⊢
K
=
Base
F
6
cphnlm
⊢
W
∈
CPreHil
→
W
∈
NrmMod
7
eqid
⊢
norm
⁡
F
=
norm
⁡
F
8
1
2
3
4
5
7
nmvs
⊢
W
∈
NrmMod
∧
X
∈
K
∧
Y
∈
V
→
N
⁡
X
·
˙
Y
=
norm
⁡
F
⁡
X
⁢
N
⁡
Y
9
6
8
syl3an1
⊢
W
∈
CPreHil
∧
X
∈
K
∧
Y
∈
V
→
N
⁡
X
·
˙
Y
=
norm
⁡
F
⁡
X
⁢
N
⁡
Y
10
cphclm
⊢
W
∈
CPreHil
→
W
∈
CMod
11
4
5
clmabs
⊢
W
∈
CMod
∧
X
∈
K
→
X
=
norm
⁡
F
⁡
X
12
10
11
sylan
⊢
W
∈
CPreHil
∧
X
∈
K
→
X
=
norm
⁡
F
⁡
X
13
12
3adant3
⊢
W
∈
CPreHil
∧
X
∈
K
∧
Y
∈
V
→
X
=
norm
⁡
F
⁡
X
14
13
oveq1d
⊢
W
∈
CPreHil
∧
X
∈
K
∧
Y
∈
V
→
X
⁢
N
⁡
Y
=
norm
⁡
F
⁡
X
⁢
N
⁡
Y
15
9
14
eqtr4d
⊢
W
∈
CPreHil
∧
X
∈
K
∧
Y
∈
V
→
N
⁡
X
·
˙
Y
=
X
⁢
N
⁡
Y