Metamath Proof Explorer


Theorem cphorthcom

Description: Orthogonality (meaning inner product is 0) is commutative. Complex version of iporthcom . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h , ˙ = 𝑖 W
cphipcj.v V = Base W
Assertion cphorthcom W CPreHil A V B V A , ˙ B = 0 B , ˙ A = 0

Proof

Step Hyp Ref Expression
1 cphipcj.h , ˙ = 𝑖 W
2 cphipcj.v V = Base W
3 cphphl W CPreHil W PreHil
4 eqid Scalar W = Scalar W
5 eqid 0 Scalar W = 0 Scalar W
6 4 1 2 5 iporthcom W PreHil A V B V A , ˙ B = 0 Scalar W B , ˙ A = 0 Scalar W
7 3 6 syl3an1 W CPreHil A V B V A , ˙ B = 0 Scalar W B , ˙ A = 0 Scalar W
8 cphclm W CPreHil W CMod
9 4 clm0 W CMod 0 = 0 Scalar W
10 8 9 syl W CPreHil 0 = 0 Scalar W
11 10 3ad2ant1 W CPreHil A V B V 0 = 0 Scalar W
12 11 eqeq2d W CPreHil A V B V A , ˙ B = 0 A , ˙ B = 0 Scalar W
13 11 eqeq2d W CPreHil A V B V B , ˙ A = 0 B , ˙ A = 0 Scalar W
14 7 12 13 3bitr4d W CPreHil A V B V A , ˙ B = 0 B , ˙ A = 0