Step |
Hyp |
Ref |
Expression |
1 |
|
cphpyth.v |
|
2 |
|
cphpyth.h |
|
3 |
|
cphpyth.p |
|
4 |
|
cphpyth.n |
|
5 |
|
cphpyth.w |
|
6 |
|
cphpyth.a |
|
7 |
|
cphpyth.b |
|
8 |
2 1 3 5 6 7 6 7
|
cph2di |
|
9 |
8
|
adantr |
|
10 |
|
simpr |
|
11 |
2 1
|
cphorthcom |
|
12 |
5 6 7 11
|
syl3anc |
|
13 |
12
|
biimpa |
|
14 |
10 13
|
oveq12d |
|
15 |
|
00id |
|
16 |
14 15
|
eqtrdi |
|
17 |
16
|
oveq2d |
|
18 |
1 2
|
cphipcl |
|
19 |
5 6 6 18
|
syl3anc |
|
20 |
1 2
|
cphipcl |
|
21 |
5 7 7 20
|
syl3anc |
|
22 |
19 21
|
addcld |
|
23 |
22
|
addid1d |
|
24 |
23
|
adantr |
|
25 |
9 17 24
|
3eqtrd |
|
26 |
|
cphngp |
|
27 |
|
ngpgrp |
|
28 |
5 26 27
|
3syl |
|
29 |
1 3 28 6 7
|
grpcld |
|
30 |
1 2 4
|
nmsq |
|
31 |
5 29 30
|
syl2anc |
|
32 |
31
|
adantr |
|
33 |
1 2 4
|
nmsq |
|
34 |
5 6 33
|
syl2anc |
|
35 |
1 2 4
|
nmsq |
|
36 |
5 7 35
|
syl2anc |
|
37 |
34 36
|
oveq12d |
|
38 |
37
|
adantr |
|
39 |
25 32 38
|
3eqtr4d |
|