Metamath Proof Explorer


Theorem cphpyth

Description: The pythagorean theorem for a subcomplex pre-Hilbert space. The square of the norm of the sum of two orthogonal vectors (i.e., whose inner product is 0) is the sum of the squares of their norms. Problem 2 in Kreyszig p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008) (Revised by SN, 22-Sep-2024)

Ref Expression
Hypotheses cphpyth.v V = Base W
cphpyth.h , ˙ = 𝑖 W
cphpyth.p + ˙ = + W
cphpyth.n N = norm W
cphpyth.w φ W CPreHil
cphpyth.a φ A V
cphpyth.b φ B V
Assertion cphpyth φ A , ˙ B = 0 N A + ˙ B 2 = N A 2 + N B 2

Proof

Step Hyp Ref Expression
1 cphpyth.v V = Base W
2 cphpyth.h , ˙ = 𝑖 W
3 cphpyth.p + ˙ = + W
4 cphpyth.n N = norm W
5 cphpyth.w φ W CPreHil
6 cphpyth.a φ A V
7 cphpyth.b φ B V
8 2 1 3 5 6 7 6 7 cph2di φ A + ˙ B , ˙ A + ˙ B = A , ˙ A + B , ˙ B + A , ˙ B + B , ˙ A
9 8 adantr φ A , ˙ B = 0 A + ˙ B , ˙ A + ˙ B = A , ˙ A + B , ˙ B + A , ˙ B + B , ˙ A
10 simpr φ A , ˙ B = 0 A , ˙ B = 0
11 2 1 cphorthcom W CPreHil A V B V A , ˙ B = 0 B , ˙ A = 0
12 5 6 7 11 syl3anc φ A , ˙ B = 0 B , ˙ A = 0
13 12 biimpa φ A , ˙ B = 0 B , ˙ A = 0
14 10 13 oveq12d φ A , ˙ B = 0 A , ˙ B + B , ˙ A = 0 + 0
15 00id 0 + 0 = 0
16 14 15 eqtrdi φ A , ˙ B = 0 A , ˙ B + B , ˙ A = 0
17 16 oveq2d φ A , ˙ B = 0 A , ˙ A + B , ˙ B + A , ˙ B + B , ˙ A = A , ˙ A + B , ˙ B + 0
18 1 2 cphipcl W CPreHil A V A V A , ˙ A
19 5 6 6 18 syl3anc φ A , ˙ A
20 1 2 cphipcl W CPreHil B V B V B , ˙ B
21 5 7 7 20 syl3anc φ B , ˙ B
22 19 21 addcld φ A , ˙ A + B , ˙ B
23 22 addid1d φ A , ˙ A + B , ˙ B + 0 = A , ˙ A + B , ˙ B
24 23 adantr φ A , ˙ B = 0 A , ˙ A + B , ˙ B + 0 = A , ˙ A + B , ˙ B
25 9 17 24 3eqtrd φ A , ˙ B = 0 A + ˙ B , ˙ A + ˙ B = A , ˙ A + B , ˙ B
26 cphngp W CPreHil W NrmGrp
27 ngpgrp W NrmGrp W Grp
28 5 26 27 3syl φ W Grp
29 1 3 28 6 7 grpcld φ A + ˙ B V
30 1 2 4 nmsq W CPreHil A + ˙ B V N A + ˙ B 2 = A + ˙ B , ˙ A + ˙ B
31 5 29 30 syl2anc φ N A + ˙ B 2 = A + ˙ B , ˙ A + ˙ B
32 31 adantr φ A , ˙ B = 0 N A + ˙ B 2 = A + ˙ B , ˙ A + ˙ B
33 1 2 4 nmsq W CPreHil A V N A 2 = A , ˙ A
34 5 6 33 syl2anc φ N A 2 = A , ˙ A
35 1 2 4 nmsq W CPreHil B V N B 2 = B , ˙ B
36 5 7 35 syl2anc φ N B 2 = B , ˙ B
37 34 36 oveq12d φ N A 2 + N B 2 = A , ˙ A + B , ˙ B
38 37 adantr φ A , ˙ B = 0 N A 2 + N B 2 = A , ˙ A + B , ˙ B
39 25 32 38 3eqtr4d φ A , ˙ B = 0 N A + ˙ B 2 = N A 2 + N B 2