Metamath Proof Explorer


Theorem cphqss

Description: The scalar field of a subcomplex pre-Hilbert space contains the rational numbers. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses cphsca.f F = Scalar W
cphsca.k K = Base F
Assertion cphqss W CPreHil K

Proof

Step Hyp Ref Expression
1 cphsca.f F = Scalar W
2 cphsca.k K = Base F
3 1 2 cphsubrg W CPreHil K SubRing fld
4 1 2 cphsca W CPreHil F = fld 𝑠 K
5 cphlvec W CPreHil W LVec
6 1 lvecdrng W LVec F DivRing
7 5 6 syl W CPreHil F DivRing
8 4 7 eqeltrrd W CPreHil fld 𝑠 K DivRing
9 qsssubdrg K SubRing fld fld 𝑠 K DivRing K
10 3 8 9 syl2anc W CPreHil K