Metamath Proof Explorer


Theorem cphreccl

Description: The scalar field of a subcomplex pre-Hilbert space is closed under reciprocal. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses cphsca.f F = Scalar W
cphsca.k K = Base F
Assertion cphreccl W CPreHil A K A 0 1 A K

Proof

Step Hyp Ref Expression
1 cphsca.f F = Scalar W
2 cphsca.k K = Base F
3 1 2 cphsca W CPreHil F = fld 𝑠 K
4 cphlvec W CPreHil W LVec
5 1 lvecdrng W LVec F DivRing
6 4 5 syl W CPreHil F DivRing
7 2 3 6 cphreccllem W CPreHil A K A 0 1 A K