Step |
Hyp |
Ref |
Expression |
1 |
|
cphsubrglem.k |
|
2 |
|
cphsubrglem.1 |
|
3 |
|
cphsubrglem.2 |
|
4 |
1 2 3
|
cphsubrglem |
|
5 |
4
|
simp3d |
|
6 |
5
|
3ad2ant1 |
|
7 |
|
cnfldbas |
|
8 |
7
|
subrgss |
|
9 |
6 8
|
syl |
|
10 |
|
simp2 |
|
11 |
9 10
|
sseldd |
|
12 |
|
simp3 |
|
13 |
|
cnfldinv |
|
14 |
11 12 13
|
syl2anc |
|
15 |
|
eqid |
|
16 |
|
cnfld0 |
|
17 |
15 16
|
subrg0 |
|
18 |
6 17
|
syl |
|
19 |
4
|
simp1d |
|
20 |
19
|
3ad2ant1 |
|
21 |
20
|
fveq2d |
|
22 |
18 21
|
eqtr4d |
|
23 |
12 22
|
neeqtrd |
|
24 |
|
eldifsn |
|
25 |
10 23 24
|
sylanbrc |
|
26 |
3
|
3ad2ant1 |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
1 27 28
|
isdrng |
|
30 |
29
|
simprbi |
|
31 |
26 30
|
syl |
|
32 |
20
|
fveq2d |
|
33 |
31 32
|
eqtr3d |
|
34 |
25 33
|
eleqtrd |
|
35 |
|
eqid |
|
36 |
|
eqid |
|
37 |
|
eqid |
|
38 |
15 35 36 37
|
subrgunit |
|
39 |
6 38
|
syl |
|
40 |
34 39
|
mpbid |
|
41 |
40
|
simp3d |
|
42 |
14 41
|
eqeltrrd |
|