Metamath Proof Explorer


Theorem cphsqrtcl

Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of nonnegative reals. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses cphsca.f F = Scalar W
cphsca.k K = Base F
Assertion cphsqrtcl W CPreHil A K A 0 A A K

Proof

Step Hyp Ref Expression
1 cphsca.f F = Scalar W
2 cphsca.k K = Base F
3 sqrtf :
4 ffn : Fn
5 3 4 ax-mp Fn
6 inss2 K 0 +∞ 0 +∞
7 rge0ssre 0 +∞
8 ax-resscn
9 7 8 sstri 0 +∞
10 6 9 sstri K 0 +∞
11 simp1 A K A 0 A A K
12 elrege0 A 0 +∞ A 0 A
13 12 biimpri A 0 A A 0 +∞
14 13 3adant1 A K A 0 A A 0 +∞
15 11 14 elind A K A 0 A A K 0 +∞
16 fnfvima Fn K 0 +∞ A K 0 +∞ A K 0 +∞
17 5 10 15 16 mp3an12i A K A 0 A A K 0 +∞
18 eqid Base W = Base W
19 eqid 𝑖 W = 𝑖 W
20 eqid norm W = norm W
21 18 19 20 1 2 iscph W CPreHil W PreHil W NrmMod F = fld 𝑠 K K 0 +∞ K norm W = x Base W x 𝑖 W x
22 21 simp2bi W CPreHil K 0 +∞ K
23 22 sselda W CPreHil A K 0 +∞ A K
24 17 23 sylan2 W CPreHil A K A 0 A A K