| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphsca.f |  | 
						
							| 2 |  | cphsca.k |  | 
						
							| 3 |  | sqrt0 |  | 
						
							| 4 |  | fveq2 |  | 
						
							| 5 |  | id |  | 
						
							| 6 | 3 4 5 | 3eqtr4a |  | 
						
							| 7 | 6 | adantl |  | 
						
							| 8 |  | simpl2 |  | 
						
							| 9 | 7 8 | eqeltrd |  | 
						
							| 10 |  | simpl1 |  | 
						
							| 11 | 1 2 | cphsubrg |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 |  | cnfldbas |  | 
						
							| 14 | 13 | subrgss |  | 
						
							| 15 | 12 14 | syl |  | 
						
							| 16 |  | simpl2 |  | 
						
							| 17 | 1 2 | cphabscl |  | 
						
							| 18 | 10 16 17 | syl2anc |  | 
						
							| 19 | 15 16 | sseldd |  | 
						
							| 20 | 19 | abscld |  | 
						
							| 21 | 19 | absge0d |  | 
						
							| 22 | 1 2 | cphsqrtcl |  | 
						
							| 23 | 10 18 20 21 22 | syl13anc |  | 
						
							| 24 |  | cnfldadd |  | 
						
							| 25 | 24 | subrgacl |  | 
						
							| 26 | 12 18 16 25 | syl3anc |  | 
						
							| 27 | 1 2 | cphabscl |  | 
						
							| 28 | 10 26 27 | syl2anc |  | 
						
							| 29 | 15 26 | sseldd |  | 
						
							| 30 |  | simpl3 |  | 
						
							| 31 | 20 | recnd |  | 
						
							| 32 | 31 19 | subnegd |  | 
						
							| 33 | 32 | eqeq1d |  | 
						
							| 34 | 19 | negcld |  | 
						
							| 35 | 31 34 | subeq0ad |  | 
						
							| 36 | 33 35 | bitr3d |  | 
						
							| 37 |  | absrpcl |  | 
						
							| 38 | 19 37 | sylancom |  | 
						
							| 39 |  | eleq1 |  | 
						
							| 40 | 38 39 | syl5ibcom |  | 
						
							| 41 | 36 40 | sylbid |  | 
						
							| 42 | 41 | necon3bd |  | 
						
							| 43 | 30 42 | mpd |  | 
						
							| 44 | 29 43 | absne0d |  | 
						
							| 45 | 1 2 | cphdivcl |  | 
						
							| 46 | 10 26 28 44 45 | syl13anc |  | 
						
							| 47 |  | cnfldmul |  | 
						
							| 48 | 47 | subrgmcl |  | 
						
							| 49 | 12 23 46 48 | syl3anc |  | 
						
							| 50 | 15 49 | sseldd |  | 
						
							| 51 |  | eqid |  | 
						
							| 52 | 51 | sqreulem |  | 
						
							| 53 | 19 43 52 | syl2anc |  | 
						
							| 54 | 53 | simp1d |  | 
						
							| 55 | 53 | simp2d |  | 
						
							| 56 | 53 | simp3d |  | 
						
							| 57 |  | df-nel |  | 
						
							| 58 | 56 57 | sylib |  | 
						
							| 59 | 50 19 54 55 58 | eqsqrtd |  | 
						
							| 60 | 59 49 | eqeltrrd |  | 
						
							| 61 | 9 60 | pm2.61dane |  |