Step |
Hyp |
Ref |
Expression |
1 |
|
cphsca.f |
|
2 |
|
cphsca.k |
|
3 |
|
sqrt0 |
|
4 |
|
fveq2 |
|
5 |
|
id |
|
6 |
3 4 5
|
3eqtr4a |
|
7 |
6
|
adantl |
|
8 |
|
simpl2 |
|
9 |
7 8
|
eqeltrd |
|
10 |
|
simpl1 |
|
11 |
1 2
|
cphsubrg |
|
12 |
10 11
|
syl |
|
13 |
|
cnfldbas |
|
14 |
13
|
subrgss |
|
15 |
12 14
|
syl |
|
16 |
|
simpl2 |
|
17 |
1 2
|
cphabscl |
|
18 |
10 16 17
|
syl2anc |
|
19 |
15 16
|
sseldd |
|
20 |
19
|
abscld |
|
21 |
19
|
absge0d |
|
22 |
1 2
|
cphsqrtcl |
|
23 |
10 18 20 21 22
|
syl13anc |
|
24 |
|
cnfldadd |
|
25 |
24
|
subrgacl |
|
26 |
12 18 16 25
|
syl3anc |
|
27 |
1 2
|
cphabscl |
|
28 |
10 26 27
|
syl2anc |
|
29 |
15 26
|
sseldd |
|
30 |
|
simpl3 |
|
31 |
20
|
recnd |
|
32 |
31 19
|
subnegd |
|
33 |
32
|
eqeq1d |
|
34 |
19
|
negcld |
|
35 |
31 34
|
subeq0ad |
|
36 |
33 35
|
bitr3d |
|
37 |
|
absrpcl |
|
38 |
19 37
|
sylancom |
|
39 |
|
eleq1 |
|
40 |
38 39
|
syl5ibcom |
|
41 |
36 40
|
sylbid |
|
42 |
41
|
necon3bd |
|
43 |
30 42
|
mpd |
|
44 |
29 43
|
absne0d |
|
45 |
1 2
|
cphdivcl |
|
46 |
10 26 28 44 45
|
syl13anc |
|
47 |
|
cnfldmul |
|
48 |
47
|
subrgmcl |
|
49 |
12 23 46 48
|
syl3anc |
|
50 |
15 49
|
sseldd |
|
51 |
|
eqid |
|
52 |
51
|
sqreulem |
|
53 |
19 43 52
|
syl2anc |
|
54 |
53
|
simp1d |
|
55 |
53
|
simp2d |
|
56 |
53
|
simp3d |
|
57 |
|
df-nel |
|
58 |
56 57
|
sylib |
|
59 |
50 19 54 55 58
|
eqsqrtd |
|
60 |
59 49
|
eqeltrrd |
|
61 |
9 60
|
pm2.61dane |
|