| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphsca.f |
|
| 2 |
|
cphsca.k |
|
| 3 |
|
sqrt0 |
|
| 4 |
|
fveq2 |
|
| 5 |
|
id |
|
| 6 |
3 4 5
|
3eqtr4a |
|
| 7 |
6
|
adantl |
|
| 8 |
|
simpl2 |
|
| 9 |
7 8
|
eqeltrd |
|
| 10 |
|
simpl1 |
|
| 11 |
1 2
|
cphsubrg |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
cnfldbas |
|
| 14 |
13
|
subrgss |
|
| 15 |
12 14
|
syl |
|
| 16 |
|
simpl2 |
|
| 17 |
1 2
|
cphabscl |
|
| 18 |
10 16 17
|
syl2anc |
|
| 19 |
15 16
|
sseldd |
|
| 20 |
19
|
abscld |
|
| 21 |
19
|
absge0d |
|
| 22 |
1 2
|
cphsqrtcl |
|
| 23 |
10 18 20 21 22
|
syl13anc |
|
| 24 |
|
cnfldadd |
|
| 25 |
24
|
subrgacl |
|
| 26 |
12 18 16 25
|
syl3anc |
|
| 27 |
1 2
|
cphabscl |
|
| 28 |
10 26 27
|
syl2anc |
|
| 29 |
15 26
|
sseldd |
|
| 30 |
|
simpl3 |
|
| 31 |
20
|
recnd |
|
| 32 |
31 19
|
subnegd |
|
| 33 |
32
|
eqeq1d |
|
| 34 |
19
|
negcld |
|
| 35 |
31 34
|
subeq0ad |
|
| 36 |
33 35
|
bitr3d |
|
| 37 |
|
absrpcl |
|
| 38 |
19 37
|
sylancom |
|
| 39 |
|
eleq1 |
|
| 40 |
38 39
|
syl5ibcom |
|
| 41 |
36 40
|
sylbid |
|
| 42 |
41
|
necon3bd |
|
| 43 |
30 42
|
mpd |
|
| 44 |
29 43
|
absne0d |
|
| 45 |
1 2
|
cphdivcl |
|
| 46 |
10 26 28 44 45
|
syl13anc |
|
| 47 |
|
cnfldmul |
|
| 48 |
47
|
subrgmcl |
|
| 49 |
12 23 46 48
|
syl3anc |
|
| 50 |
15 49
|
sseldd |
|
| 51 |
|
eqid |
|
| 52 |
51
|
sqreulem |
|
| 53 |
19 43 52
|
syl2anc |
|
| 54 |
53
|
simp1d |
|
| 55 |
53
|
simp2d |
|
| 56 |
53
|
simp3d |
|
| 57 |
|
df-nel |
|
| 58 |
56 57
|
sylib |
|
| 59 |
50 19 54 55 58
|
eqsqrtd |
|
| 60 |
59 49
|
eqeltrrd |
|
| 61 |
9 60
|
pm2.61dane |
|