Metamath Proof Explorer


Theorem cphsqrtcl3

Description: If the scalar field of a subcomplex pre-Hilbert space contains the imaginary unit _i , then it is closed under square roots (i.e., it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015)

Ref Expression
Hypotheses cphsca.f F = Scalar W
cphsca.k K = Base F
Assertion cphsqrtcl3 W CPreHil i K A K A K

Proof

Step Hyp Ref Expression
1 cphsca.f F = Scalar W
2 cphsca.k K = Base F
3 simpl1 W CPreHil i K A K A + W CPreHil
4 1 2 cphsubrg W CPreHil K SubRing fld
5 3 4 syl W CPreHil i K A K A + K SubRing fld
6 cnfldbas = Base fld
7 6 subrgss K SubRing fld K
8 5 7 syl W CPreHil i K A K A + K
9 simpl3 W CPreHil i K A K A + A K
10 8 9 sseldd W CPreHil i K A K A + A
11 10 negnegd W CPreHil i K A K A + A = A
12 11 fveq2d W CPreHil i K A K A + A = A
13 rpre A + A
14 13 adantl W CPreHil i K A K A + A
15 rpge0 A + 0 A
16 15 adantl W CPreHil i K A K A + 0 A
17 14 16 sqrtnegd W CPreHil i K A K A + A = i A
18 12 17 eqtr3d W CPreHil i K A K A + A = i A
19 simpl2 W CPreHil i K A K A + i K
20 cnfldneg A inv g fld A = A
21 10 20 syl W CPreHil i K A K A + inv g fld A = A
22 subrgsubg K SubRing fld K SubGrp fld
23 5 22 syl W CPreHil i K A K A + K SubGrp fld
24 eqid inv g fld = inv g fld
25 24 subginvcl K SubGrp fld A K inv g fld A K
26 23 9 25 syl2anc W CPreHil i K A K A + inv g fld A K
27 21 26 eqeltrrd W CPreHil i K A K A + A K
28 1 2 cphsqrtcl W CPreHil A K A 0 A A K
29 3 27 14 16 28 syl13anc W CPreHil i K A K A + A K
30 cnfldmul × = fld
31 30 subrgmcl K SubRing fld i K A K i A K
32 5 19 29 31 syl3anc W CPreHil i K A K A + i A K
33 18 32 eqeltrd W CPreHil i K A K A + A K
34 33 ex W CPreHil i K A K A + A K
35 1 2 cphsqrtcl2 W CPreHil A K ¬ A + A K
36 35 3expia W CPreHil A K ¬ A + A K
37 36 3adant2 W CPreHil i K A K ¬ A + A K
38 34 37 pm2.61d W CPreHil i K A K A K