| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphsscph.x |
|
| 2 |
|
cphsscph.s |
|
| 3 |
|
cphphl |
|
| 4 |
1 2
|
phlssphl |
|
| 5 |
3 4
|
sylan |
|
| 6 |
|
cphnlm |
|
| 7 |
1 2
|
lssnlm |
|
| 8 |
6 7
|
sylan |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
9 10
|
cphsca |
|
| 12 |
11
|
adantr |
|
| 13 |
1 9
|
resssca |
|
| 14 |
13
|
fveq2d |
|
| 15 |
14
|
oveq2d |
|
| 16 |
13 15
|
eqeq12d |
|
| 17 |
16
|
adantl |
|
| 18 |
12 17
|
mpbid |
|
| 19 |
5 8 18
|
3jca |
|
| 20 |
|
simpl |
|
| 21 |
|
elinel1 |
|
| 22 |
21
|
adantr |
|
| 23 |
|
elinel2 |
|
| 24 |
|
elrege0 |
|
| 25 |
24
|
simplbi |
|
| 26 |
23 25
|
syl |
|
| 27 |
26
|
adantr |
|
| 28 |
24
|
simprbi |
|
| 29 |
23 28
|
syl |
|
| 30 |
29
|
adantr |
|
| 31 |
22 27 30
|
3jca |
|
| 32 |
9 10
|
cphsqrtcl |
|
| 33 |
20 31 32
|
syl2anr |
|
| 34 |
|
eleq1 |
|
| 35 |
34
|
adantl |
|
| 36 |
35
|
adantr |
|
| 37 |
33 36
|
mpbid |
|
| 38 |
37
|
ex |
|
| 39 |
38
|
rexlimiva |
|
| 40 |
|
df-sqrt |
|
| 41 |
40
|
funmpt2 |
|
| 42 |
|
fvelima |
|
| 43 |
41 42
|
mpan |
|
| 44 |
39 43
|
syl11 |
|
| 45 |
44
|
ssrdv |
|
| 46 |
14
|
ineq1d |
|
| 47 |
46
|
imaeq2d |
|
| 48 |
47 14
|
sseq12d |
|
| 49 |
48
|
adantl |
|
| 50 |
45 49
|
mpbid |
|
| 51 |
|
cphlmod |
|
| 52 |
2
|
lsssubg |
|
| 53 |
51 52
|
sylan |
|
| 54 |
|
eqid |
|
| 55 |
|
eqid |
|
| 56 |
1 54 55
|
subgnm |
|
| 57 |
53 56
|
syl |
|
| 58 |
|
eqid |
|
| 59 |
|
eqid |
|
| 60 |
58 59 54
|
cphnmfval |
|
| 61 |
60
|
adantr |
|
| 62 |
1 59
|
ressip |
|
| 63 |
62
|
adantl |
|
| 64 |
63
|
oveqd |
|
| 65 |
64
|
fveq2d |
|
| 66 |
65
|
mpteq2dv |
|
| 67 |
61 66
|
eqtrd |
|
| 68 |
58 2
|
lssss |
|
| 69 |
68
|
adantl |
|
| 70 |
|
dfss |
|
| 71 |
69 70
|
sylib |
|
| 72 |
67 71
|
reseq12d |
|
| 73 |
1 58
|
ressbas |
|
| 74 |
73
|
adantl |
|
| 75 |
74
|
reseq2d |
|
| 76 |
72 75
|
eqtrd |
|
| 77 |
1 58
|
ressbasss |
|
| 78 |
77
|
a1i |
|
| 79 |
78
|
resmptd |
|
| 80 |
57 76 79
|
3eqtrd |
|
| 81 |
|
eqid |
|
| 82 |
|
eqid |
|
| 83 |
|
eqid |
|
| 84 |
|
eqid |
|
| 85 |
81 82 55 83 84
|
iscph |
|
| 86 |
19 50 80 85
|
syl3anbrc |
|