Step |
Hyp |
Ref |
Expression |
1 |
|
cphsscph.x |
|
2 |
|
cphsscph.s |
|
3 |
|
cphphl |
|
4 |
1 2
|
phlssphl |
|
5 |
3 4
|
sylan |
|
6 |
|
cphnlm |
|
7 |
1 2
|
lssnlm |
|
8 |
6 7
|
sylan |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
9 10
|
cphsca |
|
12 |
11
|
adantr |
|
13 |
1 9
|
resssca |
|
14 |
13
|
fveq2d |
|
15 |
14
|
oveq2d |
|
16 |
13 15
|
eqeq12d |
|
17 |
16
|
adantl |
|
18 |
12 17
|
mpbid |
|
19 |
5 8 18
|
3jca |
|
20 |
|
simpl |
|
21 |
|
elinel1 |
|
22 |
21
|
adantr |
|
23 |
|
elinel2 |
|
24 |
|
elrege0 |
|
25 |
24
|
simplbi |
|
26 |
23 25
|
syl |
|
27 |
26
|
adantr |
|
28 |
24
|
simprbi |
|
29 |
23 28
|
syl |
|
30 |
29
|
adantr |
|
31 |
22 27 30
|
3jca |
|
32 |
9 10
|
cphsqrtcl |
|
33 |
20 31 32
|
syl2anr |
|
34 |
|
eleq1 |
|
35 |
34
|
adantl |
|
36 |
35
|
adantr |
|
37 |
33 36
|
mpbid |
|
38 |
37
|
ex |
|
39 |
38
|
rexlimiva |
|
40 |
|
df-sqrt |
|
41 |
40
|
funmpt2 |
|
42 |
|
fvelima |
|
43 |
41 42
|
mpan |
|
44 |
39 43
|
syl11 |
|
45 |
44
|
ssrdv |
|
46 |
14
|
ineq1d |
|
47 |
46
|
imaeq2d |
|
48 |
47 14
|
sseq12d |
|
49 |
48
|
adantl |
|
50 |
45 49
|
mpbid |
|
51 |
|
cphlmod |
|
52 |
2
|
lsssubg |
|
53 |
51 52
|
sylan |
|
54 |
|
eqid |
|
55 |
|
eqid |
|
56 |
1 54 55
|
subgnm |
|
57 |
53 56
|
syl |
|
58 |
|
eqid |
|
59 |
|
eqid |
|
60 |
58 59 54
|
cphnmfval |
|
61 |
60
|
adantr |
|
62 |
1 59
|
ressip |
|
63 |
62
|
adantl |
|
64 |
63
|
oveqd |
|
65 |
64
|
fveq2d |
|
66 |
65
|
mpteq2dv |
|
67 |
61 66
|
eqtrd |
|
68 |
58 2
|
lssss |
|
69 |
68
|
adantl |
|
70 |
|
dfss |
|
71 |
69 70
|
sylib |
|
72 |
67 71
|
reseq12d |
|
73 |
1 58
|
ressbas |
|
74 |
73
|
adantl |
|
75 |
74
|
reseq2d |
|
76 |
72 75
|
eqtrd |
|
77 |
1 58
|
ressbasss |
|
78 |
77
|
a1i |
|
79 |
78
|
resmptd |
|
80 |
57 76 79
|
3eqtrd |
|
81 |
|
eqid |
|
82 |
|
eqid |
|
83 |
|
eqid |
|
84 |
|
eqid |
|
85 |
81 82 55 83 84
|
iscph |
|
86 |
19 50 80 85
|
syl3anbrc |
|