Metamath Proof Explorer


Theorem cphssphl

Description: A Banach subspace of a subcomplex pre-Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 11-Apr-2008) (Revised by AV, 25-Sep-2022)

Ref Expression
Hypotheses cphssphl.x X = W 𝑠 U
cphssphl.s S = LSubSp W
Assertion cphssphl W CPreHil U S X Ban X ℂHil

Proof

Step Hyp Ref Expression
1 cphssphl.x X = W 𝑠 U
2 cphssphl.s S = LSubSp W
3 simp3 W CPreHil U S X Ban X Ban
4 1 2 cphsscph W CPreHil U S X CPreHil
5 4 3adant3 W CPreHil U S X Ban X CPreHil
6 ishl X ℂHil X Ban X CPreHil
7 3 5 6 sylanbrc W CPreHil U S X Ban X ℂHil