Metamath Proof Explorer


Theorem cphsubrg

Description: The scalar field of a subcomplex pre-Hilbert space is a subring of CCfld . (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses cphsca.f F = Scalar W
cphsca.k K = Base F
Assertion cphsubrg W CPreHil K SubRing fld

Proof

Step Hyp Ref Expression
1 cphsca.f F = Scalar W
2 cphsca.k K = Base F
3 1 2 cphsca W CPreHil F = fld 𝑠 K
4 cphlvec W CPreHil W LVec
5 1 lvecdrng W LVec F DivRing
6 4 5 syl W CPreHil F DivRing
7 2 3 6 cphsubrglem W CPreHil F = fld 𝑠 K K = K K SubRing fld
8 7 simp3d W CPreHil K SubRing fld