| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphsubrglem.k |
|
| 2 |
|
cphsubrglem.1 |
|
| 3 |
|
cphsubrglem.2 |
|
| 4 |
2
|
fveq2d |
|
| 5 |
|
drngring |
|
| 6 |
3 5
|
syl |
|
| 7 |
2 6
|
eqeltrrd |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
8 9
|
ring0cl |
|
| 11 |
|
reldmress |
|
| 12 |
|
eqid |
|
| 13 |
11 12 8
|
elbasov |
|
| 14 |
7 10 13
|
3syl |
|
| 15 |
14
|
simprd |
|
| 16 |
|
cnfldbas |
|
| 17 |
12 16
|
ressbas |
|
| 18 |
15 17
|
syl |
|
| 19 |
4 18
|
eqtr4d |
|
| 20 |
1 19
|
eqtrid |
|
| 21 |
20
|
oveq2d |
|
| 22 |
16
|
ressinbas |
|
| 23 |
15 22
|
syl |
|
| 24 |
21 23
|
eqtr4d |
|
| 25 |
2 24
|
eqtr4d |
|
| 26 |
25 6
|
eqeltrrd |
|
| 27 |
|
cnring |
|
| 28 |
26 27
|
jctil |
|
| 29 |
12 16
|
ressbasss |
|
| 30 |
4 29
|
eqsstrdi |
|
| 31 |
1 30
|
eqsstrid |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
32 33
|
drngunz |
|
| 35 |
3 34
|
syl |
|
| 36 |
25
|
fveq2d |
|
| 37 |
|
ringgrp |
|
| 38 |
27 37
|
mp1i |
|
| 39 |
|
ringgrp |
|
| 40 |
26 39
|
syl |
|
| 41 |
16
|
issubg |
|
| 42 |
38 31 40 41
|
syl3anbrc |
|
| 43 |
|
eqid |
|
| 44 |
|
cnfld0 |
|
| 45 |
43 44
|
subg0 |
|
| 46 |
42 45
|
syl |
|
| 47 |
36 46
|
eqtr4d |
|
| 48 |
35 47
|
neeqtrd |
|
| 49 |
48
|
neneqd |
|
| 50 |
1 33
|
ringidcl |
|
| 51 |
6 50
|
syl |
|
| 52 |
31 51
|
sseldd |
|
| 53 |
52
|
sqvald |
|
| 54 |
25
|
fveq2d |
|
| 55 |
54
|
oveq1d |
|
| 56 |
25
|
fveq2d |
|
| 57 |
1 56
|
eqtrid |
|
| 58 |
51 57
|
eleqtrd |
|
| 59 |
|
eqid |
|
| 60 |
1
|
fvexi |
|
| 61 |
|
cnfldmul |
|
| 62 |
43 61
|
ressmulr |
|
| 63 |
60 62
|
ax-mp |
|
| 64 |
|
eqid |
|
| 65 |
59 63 64
|
ringlidm |
|
| 66 |
26 58 65
|
syl2anc |
|
| 67 |
53 55 66
|
3eqtrd |
|
| 68 |
|
sq01 |
|
| 69 |
52 68
|
syl |
|
| 70 |
67 69
|
mpbid |
|
| 71 |
70
|
ord |
|
| 72 |
49 71
|
mpd |
|
| 73 |
72 51
|
eqeltrrd |
|
| 74 |
31 73
|
jca |
|
| 75 |
|
cnfld1 |
|
| 76 |
16 75
|
issubrg |
|
| 77 |
28 74 76
|
sylanbrc |
|
| 78 |
25 20 77
|
3jca |
|