Step |
Hyp |
Ref |
Expression |
1 |
|
cphsubrglem.k |
|
2 |
|
cphsubrglem.1 |
|
3 |
|
cphsubrglem.2 |
|
4 |
2
|
fveq2d |
|
5 |
|
drngring |
|
6 |
3 5
|
syl |
|
7 |
2 6
|
eqeltrrd |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
8 9
|
ring0cl |
|
11 |
|
reldmress |
|
12 |
|
eqid |
|
13 |
11 12 8
|
elbasov |
|
14 |
7 10 13
|
3syl |
|
15 |
14
|
simprd |
|
16 |
|
cnfldbas |
|
17 |
12 16
|
ressbas |
|
18 |
15 17
|
syl |
|
19 |
4 18
|
eqtr4d |
|
20 |
1 19
|
eqtrid |
|
21 |
20
|
oveq2d |
|
22 |
16
|
ressinbas |
|
23 |
15 22
|
syl |
|
24 |
21 23
|
eqtr4d |
|
25 |
2 24
|
eqtr4d |
|
26 |
25 6
|
eqeltrrd |
|
27 |
|
cnring |
|
28 |
26 27
|
jctil |
|
29 |
12 16
|
ressbasss |
|
30 |
4 29
|
eqsstrdi |
|
31 |
1 30
|
eqsstrid |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
32 33
|
drngunz |
|
35 |
3 34
|
syl |
|
36 |
25
|
fveq2d |
|
37 |
|
ringgrp |
|
38 |
27 37
|
mp1i |
|
39 |
|
ringgrp |
|
40 |
26 39
|
syl |
|
41 |
16
|
issubg |
|
42 |
38 31 40 41
|
syl3anbrc |
|
43 |
|
eqid |
|
44 |
|
cnfld0 |
|
45 |
43 44
|
subg0 |
|
46 |
42 45
|
syl |
|
47 |
36 46
|
eqtr4d |
|
48 |
35 47
|
neeqtrd |
|
49 |
48
|
neneqd |
|
50 |
1 33
|
ringidcl |
|
51 |
6 50
|
syl |
|
52 |
31 51
|
sseldd |
|
53 |
52
|
sqvald |
|
54 |
25
|
fveq2d |
|
55 |
54
|
oveq1d |
|
56 |
25
|
fveq2d |
|
57 |
1 56
|
eqtrid |
|
58 |
51 57
|
eleqtrd |
|
59 |
|
eqid |
|
60 |
1
|
fvexi |
|
61 |
|
cnfldmul |
|
62 |
43 61
|
ressmulr |
|
63 |
60 62
|
ax-mp |
|
64 |
|
eqid |
|
65 |
59 63 64
|
ringlidm |
|
66 |
26 58 65
|
syl2anc |
|
67 |
53 55 66
|
3eqtrd |
|
68 |
|
sq01 |
|
69 |
52 68
|
syl |
|
70 |
67 69
|
mpbid |
|
71 |
70
|
ord |
|
72 |
49 71
|
mpd |
|
73 |
72 51
|
eqeltrrd |
|
74 |
31 73
|
jca |
|
75 |
|
cnfld1 |
|
76 |
16 75
|
issubrg |
|
77 |
28 74 76
|
sylanbrc |
|
78 |
25 20 77
|
3jca |
|