Metamath Proof Explorer


Theorem cplem1

Description: Lemma for the Collection Principle cp . (Contributed by NM, 17-Oct-2003)

Ref Expression
Hypotheses cplem1.1 C = y B | z B rank y rank z
cplem1.2 D = x A C
Assertion cplem1 x A B B D

Proof

Step Hyp Ref Expression
1 cplem1.1 C = y B | z B rank y rank z
2 cplem1.2 D = x A C
3 scott0 B = y B | z B rank y rank z =
4 1 eqeq1i C = y B | z B rank y rank z =
5 3 4 bitr4i B = C =
6 5 necon3bii B C
7 n0 C w w C
8 6 7 bitri B w w C
9 1 ssrab3 C B
10 9 sseli w C w B
11 10 a1i x A w C w B
12 ssiun2 x A C x A C
13 12 2 sseqtrrdi x A C D
14 13 sseld x A w C w D
15 11 14 jcad x A w C w B w D
16 inelcm w B w D B D
17 15 16 syl6 x A w C B D
18 17 exlimdv x A w w C B D
19 8 18 syl5bi x A B B D
20 19 rgen x A B B D