Metamath Proof Explorer


Theorem cplem2

Description: Lemma for the Collection Principle cp . (Contributed by NM, 17-Oct-2003)

Ref Expression
Hypothesis cplem2.1 A V
Assertion cplem2 y x A B B y

Proof

Step Hyp Ref Expression
1 cplem2.1 A V
2 scottex z B | w B rank z rank w V
3 1 2 iunex x A z B | w B rank z rank w V
4 nfiu1 _ x x A z B | w B rank z rank w
5 4 nfeq2 x y = x A z B | w B rank z rank w
6 ineq2 y = x A z B | w B rank z rank w B y = B x A z B | w B rank z rank w
7 6 neeq1d y = x A z B | w B rank z rank w B y B x A z B | w B rank z rank w
8 7 imbi2d y = x A z B | w B rank z rank w B B y B B x A z B | w B rank z rank w
9 5 8 ralbid y = x A z B | w B rank z rank w x A B B y x A B B x A z B | w B rank z rank w
10 eqid z B | w B rank z rank w = z B | w B rank z rank w
11 eqid x A z B | w B rank z rank w = x A z B | w B rank z rank w
12 10 11 cplem1 x A B B x A z B | w B rank z rank w
13 3 9 12 ceqsexv2d y x A B B y