Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Scott's trick; collection principle; Hilbert's epsilon
cplem2
Next ⟩
cp
Metamath Proof Explorer
Ascii
Unicode
Theorem
cplem2
Description:
Lemma for the Collection Principle
cp
.
(Contributed by
NM
, 17-Oct-2003)
Ref
Expression
Hypothesis
cplem2.1
⊢
A
∈
V
Assertion
cplem2
⊢
∃
y
∀
x
∈
A
B
≠
∅
→
B
∩
y
≠
∅
Proof
Step
Hyp
Ref
Expression
1
cplem2.1
⊢
A
∈
V
2
scottex
⊢
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
∈
V
3
1
2
iunex
⊢
⋃
x
∈
A
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
∈
V
4
nfiu1
⊢
Ⅎ
_
x
⋃
x
∈
A
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
5
4
nfeq2
⊢
Ⅎ
x
y
=
⋃
x
∈
A
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
6
ineq2
⊢
y
=
⋃
x
∈
A
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
→
B
∩
y
=
B
∩
⋃
x
∈
A
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
7
6
neeq1d
⊢
y
=
⋃
x
∈
A
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
→
B
∩
y
≠
∅
↔
B
∩
⋃
x
∈
A
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
≠
∅
8
7
imbi2d
⊢
y
=
⋃
x
∈
A
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
→
B
≠
∅
→
B
∩
y
≠
∅
↔
B
≠
∅
→
B
∩
⋃
x
∈
A
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
≠
∅
9
5
8
ralbid
⊢
y
=
⋃
x
∈
A
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
→
∀
x
∈
A
B
≠
∅
→
B
∩
y
≠
∅
↔
∀
x
∈
A
B
≠
∅
→
B
∩
⋃
x
∈
A
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
≠
∅
10
eqid
⊢
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
=
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
11
eqid
⊢
⋃
x
∈
A
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
=
⋃
x
∈
A
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
12
10
11
cplem1
⊢
∀
x
∈
A
B
≠
∅
→
B
∩
⋃
x
∈
A
z
∈
B
|
∀
w
∈
B
rank
⁡
z
⊆
rank
⁡
w
≠
∅
13
3
9
12
ceqsexv2d
⊢
∃
y
∀
x
∈
A
B
≠
∅
→
B
∩
y
≠
∅