Metamath Proof Explorer


Theorem cplgr0v

Description: A null graph (with no vertices) is a complete graph. (Contributed by Alexander van der Vekens, 13-Oct-2017) (Revised by AV, 1-Nov-2020)

Ref Expression
Hypothesis cplgr0v.v V = Vtx G
Assertion cplgr0v G W V = G ComplGraph

Proof

Step Hyp Ref Expression
1 cplgr0v.v V = Vtx G
2 rzal V = v V v UnivVtx G
3 2 adantl G W V = v V v UnivVtx G
4 1 iscplgr G W G ComplGraph v V v UnivVtx G
5 4 adantr G W V = G ComplGraph v V v UnivVtx G
6 3 5 mpbird G W V = G ComplGraph