Metamath Proof Explorer


Theorem cplgr1vlem

Description: Lemma for cplgr1v and cusgr1v . (Contributed by AV, 23-Mar-2021)

Ref Expression
Hypothesis cplgr0v.v V = Vtx G
Assertion cplgr1vlem V = 1 G V

Proof

Step Hyp Ref Expression
1 cplgr0v.v V = Vtx G
2 1 fvexi V V
3 hash1snb V V V = 1 n V = n
4 2 3 ax-mp V = 1 n V = n
5 vsnid n n
6 eleq2 V = n n V n n
7 5 6 mpbiri V = n n V
8 1 1vgrex n V G V
9 7 8 syl V = n G V
10 9 exlimiv n V = n G V
11 4 10 sylbi V = 1 G V