Metamath Proof Explorer


Theorem cplgr2v

Description: An undirected hypergraph with two (different) vertices is complete iff there is an edge between these two vertices. (Contributed by AV, 3-Nov-2020)

Ref Expression
Hypotheses cplgr0v.v V = Vtx G
cplgr2v.e E = Edg G
Assertion cplgr2v G UHGraph V = 2 G ComplGraph V E

Proof

Step Hyp Ref Expression
1 cplgr0v.v V = Vtx G
2 cplgr2v.e E = Edg G
3 1 iscplgr G UHGraph G ComplGraph v V v UnivVtx G
4 3 adantr G UHGraph V = 2 G ComplGraph v V v UnivVtx G
5 1 2 uvtx2vtx1edgb G UHGraph V = 2 V E v V v UnivVtx G
6 4 5 bitr4d G UHGraph V = 2 G ComplGraph V E