Metamath Proof Explorer


Theorem cplgrop

Description: A complete graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020)

Ref Expression
Assertion cplgrop G ComplGraph Vtx G iEdg G ComplGraph

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid Edg G = Edg G
3 1 2 iscplgredg G ComplGraph G ComplGraph v Vtx G n Vtx G v e Edg G v n e
4 edgval Edg G = ran iEdg G
5 4 a1i G ComplGraph Edg G = ran iEdg G
6 simpl Vtx g = Vtx G iEdg g = iEdg G Vtx g = Vtx G
7 6 adantl Edg G = ran iEdg G Vtx g = Vtx G iEdg g = iEdg G Vtx g = Vtx G
8 6 difeq1d Vtx g = Vtx G iEdg g = iEdg G Vtx g v = Vtx G v
9 8 adantl Edg G = ran iEdg G Vtx g = Vtx G iEdg g = iEdg G Vtx g v = Vtx G v
10 edgval Edg g = ran iEdg g
11 simpr Vtx g = Vtx G iEdg g = iEdg G iEdg g = iEdg G
12 11 rneqd Vtx g = Vtx G iEdg g = iEdg G ran iEdg g = ran iEdg G
13 10 12 syl5eq Vtx g = Vtx G iEdg g = iEdg G Edg g = ran iEdg G
14 13 adantl Edg G = ran iEdg G Vtx g = Vtx G iEdg g = iEdg G Edg g = ran iEdg G
15 simpl Edg G = ran iEdg G Vtx g = Vtx G iEdg g = iEdg G Edg G = ran iEdg G
16 14 15 eqtr4d Edg G = ran iEdg G Vtx g = Vtx G iEdg g = iEdg G Edg g = Edg G
17 16 rexeqdv Edg G = ran iEdg G Vtx g = Vtx G iEdg g = iEdg G e Edg g v n e e Edg G v n e
18 9 17 raleqbidv Edg G = ran iEdg G Vtx g = Vtx G iEdg g = iEdg G n Vtx g v e Edg g v n e n Vtx G v e Edg G v n e
19 7 18 raleqbidv Edg G = ran iEdg G Vtx g = Vtx G iEdg g = iEdg G v Vtx g n Vtx g v e Edg g v n e v Vtx G n Vtx G v e Edg G v n e
20 19 biimpar Edg G = ran iEdg G Vtx g = Vtx G iEdg g = iEdg G v Vtx G n Vtx G v e Edg G v n e v Vtx g n Vtx g v e Edg g v n e
21 eqid Vtx g = Vtx g
22 eqid Edg g = Edg g
23 21 22 iscplgredg g V g ComplGraph v Vtx g n Vtx g v e Edg g v n e
24 23 elv g ComplGraph v Vtx g n Vtx g v e Edg g v n e
25 20 24 sylibr Edg G = ran iEdg G Vtx g = Vtx G iEdg g = iEdg G v Vtx G n Vtx G v e Edg G v n e g ComplGraph
26 25 expcom v Vtx G n Vtx G v e Edg G v n e Edg G = ran iEdg G Vtx g = Vtx G iEdg g = iEdg G g ComplGraph
27 26 expd v Vtx G n Vtx G v e Edg G v n e Edg G = ran iEdg G Vtx g = Vtx G iEdg g = iEdg G g ComplGraph
28 5 27 syl5com G ComplGraph v Vtx G n Vtx G v e Edg G v n e Vtx g = Vtx G iEdg g = iEdg G g ComplGraph
29 3 28 sylbid G ComplGraph G ComplGraph Vtx g = Vtx G iEdg g = iEdg G g ComplGraph
30 29 pm2.43i G ComplGraph Vtx g = Vtx G iEdg g = iEdg G g ComplGraph
31 30 alrimiv G ComplGraph g Vtx g = Vtx G iEdg g = iEdg G g ComplGraph
32 fvexd G ComplGraph Vtx G V
33 fvexd G ComplGraph iEdg G V
34 31 32 33 gropeld G ComplGraph Vtx G iEdg G ComplGraph