Metamath Proof Explorer


Theorem cply1coe0

Description: All but the first coefficient of a constant polynomial ( i.e. a "lifted scalar") are zero. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses cply1coe0.k K = Base R
cply1coe0.0 0 ˙ = 0 R
cply1coe0.p P = Poly 1 R
cply1coe0.b B = Base P
cply1coe0.a A = algSc P
Assertion cply1coe0 R Ring S K n coe 1 A S n = 0 ˙

Proof

Step Hyp Ref Expression
1 cply1coe0.k K = Base R
2 cply1coe0.0 0 ˙ = 0 R
3 cply1coe0.p P = Poly 1 R
4 cply1coe0.b B = Base P
5 cply1coe0.a A = algSc P
6 3 5 1 2 coe1scl R Ring S K coe 1 A S = k 0 if k = 0 S 0 ˙
7 6 adantr R Ring S K n coe 1 A S = k 0 if k = 0 S 0 ˙
8 nnne0 n n 0
9 8 neneqd n ¬ n = 0
10 9 adantl R Ring S K n ¬ n = 0
11 10 adantr R Ring S K n k = n ¬ n = 0
12 eqeq1 k = n k = 0 n = 0
13 12 notbid k = n ¬ k = 0 ¬ n = 0
14 13 adantl R Ring S K n k = n ¬ k = 0 ¬ n = 0
15 11 14 mpbird R Ring S K n k = n ¬ k = 0
16 15 iffalsed R Ring S K n k = n if k = 0 S 0 ˙ = 0 ˙
17 nnnn0 n n 0
18 17 adantl R Ring S K n n 0
19 2 fvexi 0 ˙ V
20 19 a1i R Ring S K n 0 ˙ V
21 7 16 18 20 fvmptd R Ring S K n coe 1 A S n = 0 ˙
22 21 ralrimiva R Ring S K n coe 1 A S n = 0 ˙