Step |
Hyp |
Ref |
Expression |
1 |
|
cply1coe0.k |
|
2 |
|
cply1coe0.0 |
|
3 |
|
cply1coe0.p |
|
4 |
|
cply1coe0.b |
|
5 |
|
cply1coe0.a |
|
6 |
1 2 3 4 5
|
cply1coe0 |
|
7 |
6
|
ad4ant13 |
|
8 |
|
fveq2 |
|
9 |
8
|
fveq1d |
|
10 |
9
|
eqeq1d |
|
11 |
10
|
ralbidv |
|
12 |
11
|
adantl |
|
13 |
7 12
|
mpbird |
|
14 |
13
|
rexlimdva2 |
|
15 |
|
simpr |
|
16 |
|
0nn0 |
|
17 |
|
eqid |
|
18 |
17 4 3 1
|
coe1fvalcl |
|
19 |
15 16 18
|
sylancl |
|
20 |
19
|
adantr |
|
21 |
|
fveq2 |
|
22 |
21
|
eqeq2d |
|
23 |
22
|
adantl |
|
24 |
|
simpl |
|
25 |
|
eqid |
|
26 |
3
|
ply1ring |
|
27 |
3
|
ply1lmod |
|
28 |
|
eqid |
|
29 |
5 25 26 27 28 4
|
asclf |
|
30 |
29
|
adantr |
|
31 |
|
eqid |
|
32 |
17 4 3 31
|
coe1fvalcl |
|
33 |
15 16 32
|
sylancl |
|
34 |
3
|
ply1sca |
|
35 |
34
|
eqcomd |
|
36 |
35
|
fveq2d |
|
37 |
36
|
adantr |
|
38 |
33 37
|
eleqtrrd |
|
39 |
30 38
|
ffvelrnd |
|
40 |
24 15 39
|
3jca |
|
41 |
40
|
adantr |
|
42 |
|
simpr |
|
43 |
3 5 1 2
|
coe1scl |
|
44 |
19 43
|
syldan |
|
45 |
44
|
adantr |
|
46 |
|
nnne0 |
|
47 |
46
|
neneqd |
|
48 |
47
|
adantl |
|
49 |
48
|
adantr |
|
50 |
|
eqeq1 |
|
51 |
50
|
notbid |
|
52 |
51
|
adantl |
|
53 |
49 52
|
mpbird |
|
54 |
53
|
iffalsed |
|
55 |
|
nnnn0 |
|
56 |
55
|
adantl |
|
57 |
2
|
fvexi |
|
58 |
57
|
a1i |
|
59 |
45 54 56 58
|
fvmptd |
|
60 |
59
|
eqcomd |
|
61 |
60
|
adantr |
|
62 |
42 61
|
eqtrd |
|
63 |
62
|
ex |
|
64 |
63
|
ralimdva |
|
65 |
64
|
imp |
|
66 |
3 5 1
|
ply1sclid |
|
67 |
19 66
|
syldan |
|
68 |
67
|
adantr |
|
69 |
|
df-n0 |
|
70 |
69
|
raleqi |
|
71 |
|
c0ex |
|
72 |
|
fveq2 |
|
73 |
|
fveq2 |
|
74 |
72 73
|
eqeq12d |
|
75 |
74
|
ralunsn |
|
76 |
71 75
|
mp1i |
|
77 |
70 76
|
syl5bb |
|
78 |
65 68 77
|
mpbir2and |
|
79 |
|
eqid |
|
80 |
3 4 17 79
|
eqcoe1ply1eq |
|
81 |
41 78 80
|
sylc |
|
82 |
20 23 81
|
rspcedvd |
|
83 |
82
|
ex |
|
84 |
14 83
|
impbid |
|