Metamath Proof Explorer


Theorem cply1coe0bi

Description: A polynomial is constant (i.e. a "lifted scalar") iff all but the first coefficient are zero. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses cply1coe0.k K = Base R
cply1coe0.0 0 ˙ = 0 R
cply1coe0.p P = Poly 1 R
cply1coe0.b B = Base P
cply1coe0.a A = algSc P
Assertion cply1coe0bi R Ring M B s K M = A s n coe 1 M n = 0 ˙

Proof

Step Hyp Ref Expression
1 cply1coe0.k K = Base R
2 cply1coe0.0 0 ˙ = 0 R
3 cply1coe0.p P = Poly 1 R
4 cply1coe0.b B = Base P
5 cply1coe0.a A = algSc P
6 1 2 3 4 5 cply1coe0 R Ring s K n coe 1 A s n = 0 ˙
7 6 ad4ant13 R Ring M B s K M = A s n coe 1 A s n = 0 ˙
8 fveq2 M = A s coe 1 M = coe 1 A s
9 8 fveq1d M = A s coe 1 M n = coe 1 A s n
10 9 eqeq1d M = A s coe 1 M n = 0 ˙ coe 1 A s n = 0 ˙
11 10 ralbidv M = A s n coe 1 M n = 0 ˙ n coe 1 A s n = 0 ˙
12 11 adantl R Ring M B s K M = A s n coe 1 M n = 0 ˙ n coe 1 A s n = 0 ˙
13 7 12 mpbird R Ring M B s K M = A s n coe 1 M n = 0 ˙
14 13 rexlimdva2 R Ring M B s K M = A s n coe 1 M n = 0 ˙
15 simpr R Ring M B M B
16 0nn0 0 0
17 eqid coe 1 M = coe 1 M
18 17 4 3 1 coe1fvalcl M B 0 0 coe 1 M 0 K
19 15 16 18 sylancl R Ring M B coe 1 M 0 K
20 19 adantr R Ring M B n coe 1 M n = 0 ˙ coe 1 M 0 K
21 fveq2 s = coe 1 M 0 A s = A coe 1 M 0
22 21 eqeq2d s = coe 1 M 0 M = A s M = A coe 1 M 0
23 22 adantl R Ring M B n coe 1 M n = 0 ˙ s = coe 1 M 0 M = A s M = A coe 1 M 0
24 simpl R Ring M B R Ring
25 eqid Scalar P = Scalar P
26 3 ply1ring R Ring P Ring
27 3 ply1lmod R Ring P LMod
28 eqid Base Scalar P = Base Scalar P
29 5 25 26 27 28 4 asclf R Ring A : Base Scalar P B
30 29 adantr R Ring M B A : Base Scalar P B
31 eqid Base R = Base R
32 17 4 3 31 coe1fvalcl M B 0 0 coe 1 M 0 Base R
33 15 16 32 sylancl R Ring M B coe 1 M 0 Base R
34 3 ply1sca R Ring R = Scalar P
35 34 eqcomd R Ring Scalar P = R
36 35 fveq2d R Ring Base Scalar P = Base R
37 36 adantr R Ring M B Base Scalar P = Base R
38 33 37 eleqtrrd R Ring M B coe 1 M 0 Base Scalar P
39 30 38 ffvelrnd R Ring M B A coe 1 M 0 B
40 24 15 39 3jca R Ring M B R Ring M B A coe 1 M 0 B
41 40 adantr R Ring M B n coe 1 M n = 0 ˙ R Ring M B A coe 1 M 0 B
42 simpr R Ring M B n coe 1 M n = 0 ˙ coe 1 M n = 0 ˙
43 3 5 1 2 coe1scl R Ring coe 1 M 0 K coe 1 A coe 1 M 0 = k 0 if k = 0 coe 1 M 0 0 ˙
44 19 43 syldan R Ring M B coe 1 A coe 1 M 0 = k 0 if k = 0 coe 1 M 0 0 ˙
45 44 adantr R Ring M B n coe 1 A coe 1 M 0 = k 0 if k = 0 coe 1 M 0 0 ˙
46 nnne0 n n 0
47 46 neneqd n ¬ n = 0
48 47 adantl R Ring M B n ¬ n = 0
49 48 adantr R Ring M B n k = n ¬ n = 0
50 eqeq1 k = n k = 0 n = 0
51 50 notbid k = n ¬ k = 0 ¬ n = 0
52 51 adantl R Ring M B n k = n ¬ k = 0 ¬ n = 0
53 49 52 mpbird R Ring M B n k = n ¬ k = 0
54 53 iffalsed R Ring M B n k = n if k = 0 coe 1 M 0 0 ˙ = 0 ˙
55 nnnn0 n n 0
56 55 adantl R Ring M B n n 0
57 2 fvexi 0 ˙ V
58 57 a1i R Ring M B n 0 ˙ V
59 45 54 56 58 fvmptd R Ring M B n coe 1 A coe 1 M 0 n = 0 ˙
60 59 eqcomd R Ring M B n 0 ˙ = coe 1 A coe 1 M 0 n
61 60 adantr R Ring M B n coe 1 M n = 0 ˙ 0 ˙ = coe 1 A coe 1 M 0 n
62 42 61 eqtrd R Ring M B n coe 1 M n = 0 ˙ coe 1 M n = coe 1 A coe 1 M 0 n
63 62 ex R Ring M B n coe 1 M n = 0 ˙ coe 1 M n = coe 1 A coe 1 M 0 n
64 63 ralimdva R Ring M B n coe 1 M n = 0 ˙ n coe 1 M n = coe 1 A coe 1 M 0 n
65 64 imp R Ring M B n coe 1 M n = 0 ˙ n coe 1 M n = coe 1 A coe 1 M 0 n
66 3 5 1 ply1sclid R Ring coe 1 M 0 K coe 1 M 0 = coe 1 A coe 1 M 0 0
67 19 66 syldan R Ring M B coe 1 M 0 = coe 1 A coe 1 M 0 0
68 67 adantr R Ring M B n coe 1 M n = 0 ˙ coe 1 M 0 = coe 1 A coe 1 M 0 0
69 df-n0 0 = 0
70 69 raleqi n 0 coe 1 M n = coe 1 A coe 1 M 0 n n 0 coe 1 M n = coe 1 A coe 1 M 0 n
71 c0ex 0 V
72 fveq2 n = 0 coe 1 M n = coe 1 M 0
73 fveq2 n = 0 coe 1 A coe 1 M 0 n = coe 1 A coe 1 M 0 0
74 72 73 eqeq12d n = 0 coe 1 M n = coe 1 A coe 1 M 0 n coe 1 M 0 = coe 1 A coe 1 M 0 0
75 74 ralunsn 0 V n 0 coe 1 M n = coe 1 A coe 1 M 0 n n coe 1 M n = coe 1 A coe 1 M 0 n coe 1 M 0 = coe 1 A coe 1 M 0 0
76 71 75 mp1i R Ring M B n coe 1 M n = 0 ˙ n 0 coe 1 M n = coe 1 A coe 1 M 0 n n coe 1 M n = coe 1 A coe 1 M 0 n coe 1 M 0 = coe 1 A coe 1 M 0 0
77 70 76 syl5bb R Ring M B n coe 1 M n = 0 ˙ n 0 coe 1 M n = coe 1 A coe 1 M 0 n n coe 1 M n = coe 1 A coe 1 M 0 n coe 1 M 0 = coe 1 A coe 1 M 0 0
78 65 68 77 mpbir2and R Ring M B n coe 1 M n = 0 ˙ n 0 coe 1 M n = coe 1 A coe 1 M 0 n
79 eqid coe 1 A coe 1 M 0 = coe 1 A coe 1 M 0
80 3 4 17 79 eqcoe1ply1eq R Ring M B A coe 1 M 0 B n 0 coe 1 M n = coe 1 A coe 1 M 0 n M = A coe 1 M 0
81 41 78 80 sylc R Ring M B n coe 1 M n = 0 ˙ M = A coe 1 M 0
82 20 23 81 rspcedvd R Ring M B n coe 1 M n = 0 ˙ s K M = A s
83 82 ex R Ring M B n coe 1 M n = 0 ˙ s K M = A s
84 14 83 impbid R Ring M B s K M = A s n coe 1 M n = 0 ˙