Step |
Hyp |
Ref |
Expression |
1 |
|
cply1mul.p |
|
2 |
|
cply1mul.b |
|
3 |
|
cply1mul.0 |
|
4 |
|
cply1mul.m |
|
5 |
|
eqid |
|
6 |
1 4 5 2
|
coe1mul |
|
7 |
6
|
3expb |
|
8 |
7
|
adantr |
|
9 |
8
|
adantr |
|
10 |
|
oveq2 |
|
11 |
|
fvoveq1 |
|
12 |
11
|
oveq2d |
|
13 |
10 12
|
mpteq12dv |
|
14 |
13
|
oveq2d |
|
15 |
14
|
adantl |
|
16 |
|
nnnn0 |
|
17 |
16
|
adantl |
|
18 |
|
ovexd |
|
19 |
9 15 17 18
|
fvmptd |
|
20 |
|
r19.26 |
|
21 |
|
oveq2 |
|
22 |
|
nncn |
|
23 |
22
|
subid1d |
|
24 |
23
|
adantr |
|
25 |
21 24
|
sylan9eqr |
|
26 |
|
simpll |
|
27 |
25 26
|
eqeltrd |
|
28 |
|
fveqeq2 |
|
29 |
28
|
rspcv |
|
30 |
27 29
|
syl |
|
31 |
|
oveq2 |
|
32 |
|
simpll |
|
33 |
|
simprl |
|
34 |
|
elfznn0 |
|
35 |
34
|
adantl |
|
36 |
35
|
adantr |
|
37 |
|
eqid |
|
38 |
|
eqid |
|
39 |
37 2 1 38
|
coe1fvalcl |
|
40 |
33 36 39
|
syl2an |
|
41 |
38 5 3
|
ringrz |
|
42 |
32 40 41
|
syl2anc |
|
43 |
31 42
|
sylan9eqr |
|
44 |
43
|
ex |
|
45 |
44
|
expcom |
|
46 |
45
|
com23 |
|
47 |
30 46
|
syldc |
|
48 |
47
|
expd |
|
49 |
48
|
com24 |
|
50 |
49
|
adantl |
|
51 |
50
|
com13 |
|
52 |
|
neqne |
|
53 |
52 34
|
anim12ci |
|
54 |
|
elnnne0 |
|
55 |
53 54
|
sylibr |
|
56 |
|
fveqeq2 |
|
57 |
56
|
rspcv |
|
58 |
55 57
|
syl |
|
59 |
|
oveq1 |
|
60 |
|
simpll |
|
61 |
2
|
eleq2i |
|
62 |
61
|
biimpi |
|
63 |
62
|
adantl |
|
64 |
63
|
adantl |
|
65 |
|
fznn0sub |
|
66 |
|
eqid |
|
67 |
|
eqid |
|
68 |
66 67 1 38
|
coe1fvalcl |
|
69 |
64 65 68
|
syl2an |
|
70 |
38 5 3
|
ringlz |
|
71 |
60 69 70
|
syl2anc |
|
72 |
59 71
|
sylan9eqr |
|
73 |
72
|
ex |
|
74 |
73
|
ex |
|
75 |
74
|
com23 |
|
76 |
75
|
a1dd |
|
77 |
76
|
com14 |
|
78 |
77
|
adantl |
|
79 |
58 78
|
syld |
|
80 |
79
|
com24 |
|
81 |
80
|
ex |
|
82 |
81
|
com14 |
|
83 |
82
|
imp |
|
84 |
83
|
com14 |
|
85 |
84
|
adantr |
|
86 |
85
|
com13 |
|
87 |
51 86
|
pm2.61i |
|
88 |
20 87
|
syl5bi |
|
89 |
88
|
imp |
|
90 |
89
|
impl |
|
91 |
90
|
mpteq2dva |
|
92 |
91
|
oveq2d |
|
93 |
|
ringmnd |
|
94 |
|
ovexd |
|
95 |
3
|
gsumz |
|
96 |
93 94 95
|
syl2anc |
|
97 |
96
|
adantr |
|
98 |
97
|
adantr |
|
99 |
98
|
adantr |
|
100 |
19 92 99
|
3eqtrd |
|
101 |
100
|
ralrimiva |
|
102 |
|
fveqeq2 |
|
103 |
102
|
cbvralvw |
|
104 |
101 103
|
sylibr |
|
105 |
104
|
ex |
|