Metamath Proof Explorer


Theorem cpm2mf

Description: The inverse matrix transformation is a function from the constant polynomial matrices to the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses cpm2mf.a A = N Mat R
cpm2mf.k K = Base A
cpm2mf.s S = N ConstPolyMat R
cpm2mf.i I = N cPolyMatToMat R
Assertion cpm2mf N Fin R Ring I : S K

Proof

Step Hyp Ref Expression
1 cpm2mf.a A = N Mat R
2 cpm2mf.k K = Base A
3 cpm2mf.s S = N ConstPolyMat R
4 cpm2mf.i I = N cPolyMatToMat R
5 4 3 cpm2mfval N Fin R Ring I = m S x N , y N coe 1 x m y 0
6 eqid Base R = Base R
7 simpll N Fin R Ring m S N Fin
8 simplr N Fin R Ring m S R Ring
9 eqid N Mat Poly 1 R = N Mat Poly 1 R
10 eqid Base Poly 1 R = Base Poly 1 R
11 eqid Base N Mat Poly 1 R = Base N Mat Poly 1 R
12 simp2 N Fin R Ring m S x N y N x N
13 simp3 N Fin R Ring m S x N y N y N
14 eqid Poly 1 R = Poly 1 R
15 3 14 9 11 cpmatpmat N Fin R Ring m S m Base N Mat Poly 1 R
16 15 3expa N Fin R Ring m S m Base N Mat Poly 1 R
17 16 3ad2ant1 N Fin R Ring m S x N y N m Base N Mat Poly 1 R
18 9 10 11 12 13 17 matecld N Fin R Ring m S x N y N x m y Base Poly 1 R
19 0nn0 0 0
20 eqid coe 1 x m y = coe 1 x m y
21 20 10 14 6 coe1fvalcl x m y Base Poly 1 R 0 0 coe 1 x m y 0 Base R
22 18 19 21 sylancl N Fin R Ring m S x N y N coe 1 x m y 0 Base R
23 1 6 2 7 8 22 matbas2d N Fin R Ring m S x N , y N coe 1 x m y 0 K
24 5 23 fmpt3d N Fin R Ring I : S K