Metamath Proof Explorer


Theorem cpm2mvalel

Description: A (matrix) element of the result of an inverse matrix transformation. (Contributed by AV, 14-Dec-2019)

Ref Expression
Hypotheses cpm2mfval.i I = N cPolyMatToMat R
cpm2mfval.s S = N ConstPolyMat R
Assertion cpm2mvalel N Fin R V M S X N Y N X I M Y = coe 1 X M Y 0

Proof

Step Hyp Ref Expression
1 cpm2mfval.i I = N cPolyMatToMat R
2 cpm2mfval.s S = N ConstPolyMat R
3 1 2 cpm2mval N Fin R V M S I M = x N , y N coe 1 x M y 0
4 3 adantr N Fin R V M S X N Y N I M = x N , y N coe 1 x M y 0
5 oveq12 x = X y = Y x M y = X M Y
6 5 fveq2d x = X y = Y coe 1 x M y = coe 1 X M Y
7 6 fveq1d x = X y = Y coe 1 x M y 0 = coe 1 X M Y 0
8 7 adantl N Fin R V M S X N Y N x = X y = Y coe 1 x M y 0 = coe 1 X M Y 0
9 simprl N Fin R V M S X N Y N X N
10 simprr N Fin R V M S X N Y N Y N
11 fvexd N Fin R V M S X N Y N coe 1 X M Y 0 V
12 4 8 9 10 11 ovmpod N Fin R V M S X N Y N X I M Y = coe 1 X M Y 0