Metamath Proof Explorer


Theorem cpmadugsum

Description: The product of the characteristic matrix of a given matrix and its adjunct represented as an infinite sum. (Contributed by AV, 10-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a A = N Mat R
cpmadugsum.b B = Base A
cpmadugsum.p P = Poly 1 R
cpmadugsum.y Y = N Mat P
cpmadugsum.t T = N matToPolyMat R
cpmadugsum.x X = var 1 R
cpmadugsum.e × ˙ = mulGrp P
cpmadugsum.m · ˙ = Y
cpmadugsum.r × ˙ = Y
cpmadugsum.1 1 ˙ = 1 Y
cpmadugsum.g + ˙ = + Y
cpmadugsum.s - ˙ = - Y
cpmadugsum.i I = X · ˙ 1 ˙ - ˙ T M
cpmadugsum.j J = N maAdju P
cpmadugsum.0 0 ˙ = 0 Y
cpmadugsum.g2 G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
Assertion cpmadugsum N Fin R CRing M B s b B 0 s I × ˙ J I = Y i 0 i × ˙ X · ˙ G i

Proof

Step Hyp Ref Expression
1 cpmadugsum.a A = N Mat R
2 cpmadugsum.b B = Base A
3 cpmadugsum.p P = Poly 1 R
4 cpmadugsum.y Y = N Mat P
5 cpmadugsum.t T = N matToPolyMat R
6 cpmadugsum.x X = var 1 R
7 cpmadugsum.e × ˙ = mulGrp P
8 cpmadugsum.m · ˙ = Y
9 cpmadugsum.r × ˙ = Y
10 cpmadugsum.1 1 ˙ = 1 Y
11 cpmadugsum.g + ˙ = + Y
12 cpmadugsum.s - ˙ = - Y
13 cpmadugsum.i I = X · ˙ 1 ˙ - ˙ T M
14 cpmadugsum.j J = N maAdju P
15 cpmadugsum.0 0 ˙ = 0 Y
16 cpmadugsum.g2 G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cpmadugsumfi N Fin R CRing M B s b B 0 s I × ˙ J I = Y i = 1 s i × ˙ X · ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ X · ˙ T b s - ˙ T M × ˙ T b 0
18 simpr N Fin R CRing M B s b B 0 s I × ˙ J I = Y i = 1 s i × ˙ X · ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ X · ˙ T b s - ˙ T M × ˙ T b 0 I × ˙ J I = Y i = 1 s i × ˙ X · ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ X · ˙ T b s - ˙ T M × ˙ T b 0
19 1 2 3 4 9 12 15 5 16 6 8 7 11 chfacfscmulgsum N Fin R CRing M B s b B 0 s Y i 0 i × ˙ X · ˙ G i = Y i = 1 s i × ˙ X · ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ X · ˙ T b s - ˙ T M × ˙ T b 0
20 19 eqcomd N Fin R CRing M B s b B 0 s Y i = 1 s i × ˙ X · ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ X · ˙ T b s - ˙ T M × ˙ T b 0 = Y i 0 i × ˙ X · ˙ G i
21 20 adantr N Fin R CRing M B s b B 0 s I × ˙ J I = Y i = 1 s i × ˙ X · ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ X · ˙ T b s - ˙ T M × ˙ T b 0 Y i = 1 s i × ˙ X · ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ X · ˙ T b s - ˙ T M × ˙ T b 0 = Y i 0 i × ˙ X · ˙ G i
22 18 21 eqtrd N Fin R CRing M B s b B 0 s I × ˙ J I = Y i = 1 s i × ˙ X · ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ X · ˙ T b s - ˙ T M × ˙ T b 0 I × ˙ J I = Y i 0 i × ˙ X · ˙ G i
23 22 ex N Fin R CRing M B s b B 0 s I × ˙ J I = Y i = 1 s i × ˙ X · ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ X · ˙ T b s - ˙ T M × ˙ T b 0 I × ˙ J I = Y i 0 i × ˙ X · ˙ G i
24 23 reximdvva N Fin R CRing M B s b B 0 s I × ˙ J I = Y i = 1 s i × ˙ X · ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ X · ˙ T b s - ˙ T M × ˙ T b 0 s b B 0 s I × ˙ J I = Y i 0 i × ˙ X · ˙ G i
25 17 24 mpd N Fin R CRing M B s b B 0 s I × ˙ J I = Y i 0 i × ˙ X · ˙ G i