Step |
Hyp |
Ref |
Expression |
1 |
|
cpmadugsum.a |
|
2 |
|
cpmadugsum.b |
|
3 |
|
cpmadugsum.p |
|
4 |
|
cpmadugsum.y |
|
5 |
|
cpmadugsum.t |
|
6 |
|
cpmadugsum.x |
|
7 |
|
cpmadugsum.e |
|
8 |
|
cpmadugsum.m |
|
9 |
|
cpmadugsum.r |
|
10 |
|
cpmadugsum.1 |
|
11 |
|
crngring |
|
12 |
3
|
ply1ring |
|
13 |
11 12
|
syl |
|
14 |
13
|
3ad2ant2 |
|
15 |
|
eqid |
|
16 |
15
|
ringmgp |
|
17 |
14 16
|
syl |
|
18 |
17
|
ad2antrr |
|
19 |
|
elfznn0 |
|
20 |
19
|
adantl |
|
21 |
|
1nn0 |
|
22 |
21
|
a1i |
|
23 |
11
|
3ad2ant2 |
|
24 |
|
eqid |
|
25 |
6 3 24
|
vr1cl |
|
26 |
23 25
|
syl |
|
27 |
26
|
ad2antrr |
|
28 |
15 24
|
mgpbas |
|
29 |
|
eqid |
|
30 |
15 29
|
mgpplusg |
|
31 |
28 7 30
|
mulgnn0dir |
|
32 |
18 20 22 27 31
|
syl13anc |
|
33 |
3
|
ply1crng |
|
34 |
33
|
anim2i |
|
35 |
34
|
3adant3 |
|
36 |
4
|
matsca2 |
|
37 |
35 36
|
syl |
|
38 |
37
|
ad2antrr |
|
39 |
38
|
fveq2d |
|
40 |
|
eqidd |
|
41 |
28 7
|
mulg1 |
|
42 |
26 41
|
syl |
|
43 |
42
|
ad2antrr |
|
44 |
39 40 43
|
oveq123d |
|
45 |
32 44
|
eqtrd |
|
46 |
13
|
anim2i |
|
47 |
46
|
3adant3 |
|
48 |
4
|
matring |
|
49 |
47 48
|
syl |
|
50 |
49
|
ad2antrr |
|
51 |
|
simpll1 |
|
52 |
23
|
ad2antrr |
|
53 |
|
simplrl |
|
54 |
|
simprr |
|
55 |
54
|
anim1i |
|
56 |
1 2 3 4 5
|
m2pmfzmap |
|
57 |
51 52 53 55 56
|
syl31anc |
|
58 |
|
eqid |
|
59 |
58 9 10
|
ringlidm |
|
60 |
50 57 59
|
syl2anc |
|
61 |
60
|
eqcomd |
|
62 |
45 61
|
oveq12d |
|
63 |
4
|
matassa |
|
64 |
34 63
|
syl |
|
65 |
64
|
3adant3 |
|
66 |
65
|
ad2antrr |
|
67 |
37
|
eqcomd |
|
68 |
67
|
fveq2d |
|
69 |
26 68
|
eleqtrrd |
|
70 |
69
|
ad2antrr |
|
71 |
28 7
|
mulgnn0cl |
|
72 |
18 20 27 71
|
syl3anc |
|
73 |
68
|
ad2antrr |
|
74 |
72 73
|
eleqtrrd |
|
75 |
46 48
|
syl |
|
76 |
75
|
3adant3 |
|
77 |
58 10
|
ringidcl |
|
78 |
76 77
|
syl |
|
79 |
78
|
ad2antrr |
|
80 |
|
eqid |
|
81 |
|
eqid |
|
82 |
|
eqid |
|
83 |
58 80 81 82 8 9
|
assa2ass |
|
84 |
66 70 74 79 57 83
|
syl122anc |
|
85 |
84
|
eqcomd |
|
86 |
62 85
|
eqtrd |
|
87 |
86
|
mpteq2dva |
|
88 |
87
|
oveq2d |
|
89 |
|
eqid |
|
90 |
|
eqid |
|
91 |
76
|
adantr |
|
92 |
|
ovexd |
|
93 |
4
|
matlmod |
|
94 |
46 93
|
syl |
|
95 |
94
|
3adant3 |
|
96 |
11
|
adantl |
|
97 |
96 25
|
syl |
|
98 |
34 36
|
syl |
|
99 |
98
|
eqcomd |
|
100 |
99
|
fveq2d |
|
101 |
97 100
|
eleqtrrd |
|
102 |
101
|
3adant3 |
|
103 |
49 77
|
syl |
|
104 |
58 80 8 81
|
lmodvscl |
|
105 |
95 102 103 104
|
syl3anc |
|
106 |
105
|
adantr |
|
107 |
95
|
ad2antrr |
|
108 |
36
|
eqcomd |
|
109 |
108
|
fveq2d |
|
110 |
35 109
|
syl |
|
111 |
110
|
eleq2d |
|
112 |
111
|
ad2antrr |
|
113 |
72 112
|
mpbird |
|
114 |
58 80 8 81
|
lmodvscl |
|
115 |
107 113 57 114
|
syl3anc |
|
116 |
|
simpl1 |
|
117 |
23
|
adantr |
|
118 |
|
simprl |
|
119 |
|
eqid |
|
120 |
|
fzfid |
|
121 |
|
ovexd |
|
122 |
|
fvexd |
|
123 |
119 120 121 122
|
fsuppmptdm |
|
124 |
116 117 118 54 123
|
syl31anc |
|
125 |
58 89 90 9 91 92 106 115 124
|
gsummulc2 |
|
126 |
88 125
|
eqtr2d |
|