Metamath Proof Explorer


Theorem cpmadugsumlemB

Description: Lemma B for cpmadugsum . (Contributed by AV, 2-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a A = N Mat R
cpmadugsum.b B = Base A
cpmadugsum.p P = Poly 1 R
cpmadugsum.y Y = N Mat P
cpmadugsum.t T = N matToPolyMat R
cpmadugsum.x X = var 1 R
cpmadugsum.e × ˙ = mulGrp P
cpmadugsum.m · ˙ = Y
cpmadugsum.r × ˙ = Y
cpmadugsum.1 1 ˙ = 1 Y
Assertion cpmadugsumlemB N Fin R CRing M B s 0 b B 0 s X · ˙ 1 ˙ × ˙ Y i = 0 s i × ˙ X · ˙ T b i = Y i = 0 s i + 1 × ˙ X · ˙ T b i

Proof

Step Hyp Ref Expression
1 cpmadugsum.a A = N Mat R
2 cpmadugsum.b B = Base A
3 cpmadugsum.p P = Poly 1 R
4 cpmadugsum.y Y = N Mat P
5 cpmadugsum.t T = N matToPolyMat R
6 cpmadugsum.x X = var 1 R
7 cpmadugsum.e × ˙ = mulGrp P
8 cpmadugsum.m · ˙ = Y
9 cpmadugsum.r × ˙ = Y
10 cpmadugsum.1 1 ˙ = 1 Y
11 crngring R CRing R Ring
12 3 ply1ring R Ring P Ring
13 11 12 syl R CRing P Ring
14 13 3ad2ant2 N Fin R CRing M B P Ring
15 eqid mulGrp P = mulGrp P
16 15 ringmgp P Ring mulGrp P Mnd
17 14 16 syl N Fin R CRing M B mulGrp P Mnd
18 17 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s mulGrp P Mnd
19 elfznn0 i 0 s i 0
20 19 adantl N Fin R CRing M B s 0 b B 0 s i 0 s i 0
21 1nn0 1 0
22 21 a1i N Fin R CRing M B s 0 b B 0 s i 0 s 1 0
23 11 3ad2ant2 N Fin R CRing M B R Ring
24 eqid Base P = Base P
25 6 3 24 vr1cl R Ring X Base P
26 23 25 syl N Fin R CRing M B X Base P
27 26 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s X Base P
28 15 24 mgpbas Base P = Base mulGrp P
29 eqid P = P
30 15 29 mgpplusg P = + mulGrp P
31 28 7 30 mulgnn0dir mulGrp P Mnd i 0 1 0 X Base P i + 1 × ˙ X = i × ˙ X P 1 × ˙ X
32 18 20 22 27 31 syl13anc N Fin R CRing M B s 0 b B 0 s i 0 s i + 1 × ˙ X = i × ˙ X P 1 × ˙ X
33 3 ply1crng R CRing P CRing
34 33 anim2i N Fin R CRing N Fin P CRing
35 34 3adant3 N Fin R CRing M B N Fin P CRing
36 4 matsca2 N Fin P CRing P = Scalar Y
37 35 36 syl N Fin R CRing M B P = Scalar Y
38 37 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s P = Scalar Y
39 38 fveq2d N Fin R CRing M B s 0 b B 0 s i 0 s P = Scalar Y
40 eqidd N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X = i × ˙ X
41 28 7 mulg1 X Base P 1 × ˙ X = X
42 26 41 syl N Fin R CRing M B 1 × ˙ X = X
43 42 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s 1 × ˙ X = X
44 39 40 43 oveq123d N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X P 1 × ˙ X = i × ˙ X Scalar Y X
45 32 44 eqtrd N Fin R CRing M B s 0 b B 0 s i 0 s i + 1 × ˙ X = i × ˙ X Scalar Y X
46 13 anim2i N Fin R CRing N Fin P Ring
47 46 3adant3 N Fin R CRing M B N Fin P Ring
48 4 matring N Fin P Ring Y Ring
49 47 48 syl N Fin R CRing M B Y Ring
50 49 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s Y Ring
51 simpll1 N Fin R CRing M B s 0 b B 0 s i 0 s N Fin
52 23 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s R Ring
53 simplrl N Fin R CRing M B s 0 b B 0 s i 0 s s 0
54 simprr N Fin R CRing M B s 0 b B 0 s b B 0 s
55 54 anim1i N Fin R CRing M B s 0 b B 0 s i 0 s b B 0 s i 0 s
56 1 2 3 4 5 m2pmfzmap N Fin R Ring s 0 b B 0 s i 0 s T b i Base Y
57 51 52 53 55 56 syl31anc N Fin R CRing M B s 0 b B 0 s i 0 s T b i Base Y
58 eqid Base Y = Base Y
59 58 9 10 ringlidm Y Ring T b i Base Y 1 ˙ × ˙ T b i = T b i
60 50 57 59 syl2anc N Fin R CRing M B s 0 b B 0 s i 0 s 1 ˙ × ˙ T b i = T b i
61 60 eqcomd N Fin R CRing M B s 0 b B 0 s i 0 s T b i = 1 ˙ × ˙ T b i
62 45 61 oveq12d N Fin R CRing M B s 0 b B 0 s i 0 s i + 1 × ˙ X · ˙ T b i = i × ˙ X Scalar Y X · ˙ 1 ˙ × ˙ T b i
63 4 matassa N Fin P CRing Y AssAlg
64 34 63 syl N Fin R CRing Y AssAlg
65 64 3adant3 N Fin R CRing M B Y AssAlg
66 65 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s Y AssAlg
67 37 eqcomd N Fin R CRing M B Scalar Y = P
68 67 fveq2d N Fin R CRing M B Base Scalar Y = Base P
69 26 68 eleqtrrd N Fin R CRing M B X Base Scalar Y
70 69 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s X Base Scalar Y
71 28 7 18 20 27 mulgnn0cld N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base P
72 68 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s Base Scalar Y = Base P
73 71 72 eleqtrrd N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base Scalar Y
74 46 48 syl N Fin R CRing Y Ring
75 74 3adant3 N Fin R CRing M B Y Ring
76 58 10 ringidcl Y Ring 1 ˙ Base Y
77 75 76 syl N Fin R CRing M B 1 ˙ Base Y
78 77 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s 1 ˙ Base Y
79 eqid Scalar Y = Scalar Y
80 eqid Base Scalar Y = Base Scalar Y
81 eqid Scalar Y = Scalar Y
82 58 79 80 81 8 9 assa2ass Y AssAlg X Base Scalar Y i × ˙ X Base Scalar Y 1 ˙ Base Y T b i Base Y X · ˙ 1 ˙ × ˙ i × ˙ X · ˙ T b i = i × ˙ X Scalar Y X · ˙ 1 ˙ × ˙ T b i
83 66 70 73 78 57 82 syl122anc N Fin R CRing M B s 0 b B 0 s i 0 s X · ˙ 1 ˙ × ˙ i × ˙ X · ˙ T b i = i × ˙ X Scalar Y X · ˙ 1 ˙ × ˙ T b i
84 83 eqcomd N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Scalar Y X · ˙ 1 ˙ × ˙ T b i = X · ˙ 1 ˙ × ˙ i × ˙ X · ˙ T b i
85 62 84 eqtrd N Fin R CRing M B s 0 b B 0 s i 0 s i + 1 × ˙ X · ˙ T b i = X · ˙ 1 ˙ × ˙ i × ˙ X · ˙ T b i
86 85 mpteq2dva N Fin R CRing M B s 0 b B 0 s i 0 s i + 1 × ˙ X · ˙ T b i = i 0 s X · ˙ 1 ˙ × ˙ i × ˙ X · ˙ T b i
87 86 oveq2d N Fin R CRing M B s 0 b B 0 s Y i = 0 s i + 1 × ˙ X · ˙ T b i = Y i = 0 s X · ˙ 1 ˙ × ˙ i × ˙ X · ˙ T b i
88 eqid 0 Y = 0 Y
89 75 adantr N Fin R CRing M B s 0 b B 0 s Y Ring
90 ovexd N Fin R CRing M B s 0 b B 0 s 0 s V
91 4 matlmod N Fin P Ring Y LMod
92 46 91 syl N Fin R CRing Y LMod
93 92 3adant3 N Fin R CRing M B Y LMod
94 11 adantl N Fin R CRing R Ring
95 94 25 syl N Fin R CRing X Base P
96 34 36 syl N Fin R CRing P = Scalar Y
97 96 eqcomd N Fin R CRing Scalar Y = P
98 97 fveq2d N Fin R CRing Base Scalar Y = Base P
99 95 98 eleqtrrd N Fin R CRing X Base Scalar Y
100 99 3adant3 N Fin R CRing M B X Base Scalar Y
101 49 76 syl N Fin R CRing M B 1 ˙ Base Y
102 58 79 8 80 lmodvscl Y LMod X Base Scalar Y 1 ˙ Base Y X · ˙ 1 ˙ Base Y
103 93 100 101 102 syl3anc N Fin R CRing M B X · ˙ 1 ˙ Base Y
104 103 adantr N Fin R CRing M B s 0 b B 0 s X · ˙ 1 ˙ Base Y
105 93 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s Y LMod
106 36 eqcomd N Fin P CRing Scalar Y = P
107 106 fveq2d N Fin P CRing Base Scalar Y = Base P
108 35 107 syl N Fin R CRing M B Base Scalar Y = Base P
109 108 eleq2d N Fin R CRing M B i × ˙ X Base Scalar Y i × ˙ X Base P
110 109 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base Scalar Y i × ˙ X Base P
111 71 110 mpbird N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base Scalar Y
112 58 79 8 80 lmodvscl Y LMod i × ˙ X Base Scalar Y T b i Base Y i × ˙ X · ˙ T b i Base Y
113 105 111 57 112 syl3anc N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X · ˙ T b i Base Y
114 simpl1 N Fin R CRing M B s 0 b B 0 s N Fin
115 23 adantr N Fin R CRing M B s 0 b B 0 s R Ring
116 simprl N Fin R CRing M B s 0 b B 0 s s 0
117 eqid i 0 s i × ˙ X · ˙ T b i = i 0 s i × ˙ X · ˙ T b i
118 fzfid N Fin R Ring s 0 b B 0 s 0 s Fin
119 ovexd N Fin R Ring s 0 b B 0 s i 0 s i × ˙ X · ˙ T b i V
120 fvexd N Fin R Ring s 0 b B 0 s 0 Y V
121 117 118 119 120 fsuppmptdm N Fin R Ring s 0 b B 0 s finSupp 0 Y i 0 s i × ˙ X · ˙ T b i
122 114 115 116 54 121 syl31anc N Fin R CRing M B s 0 b B 0 s finSupp 0 Y i 0 s i × ˙ X · ˙ T b i
123 58 88 9 89 90 104 113 122 gsummulc2 N Fin R CRing M B s 0 b B 0 s Y i = 0 s X · ˙ 1 ˙ × ˙ i × ˙ X · ˙ T b i = X · ˙ 1 ˙ × ˙ Y i = 0 s i × ˙ X · ˙ T b i
124 87 123 eqtr2d N Fin R CRing M B s 0 b B 0 s X · ˙ 1 ˙ × ˙ Y i = 0 s i × ˙ X · ˙ T b i = Y i = 0 s i + 1 × ˙ X · ˙ T b i