Metamath Proof Explorer


Theorem cpmadugsumlemC

Description: Lemma C for cpmadugsum . (Contributed by AV, 2-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a A = N Mat R
cpmadugsum.b B = Base A
cpmadugsum.p P = Poly 1 R
cpmadugsum.y Y = N Mat P
cpmadugsum.t T = N matToPolyMat R
cpmadugsum.x X = var 1 R
cpmadugsum.e × ˙ = mulGrp P
cpmadugsum.m · ˙ = Y
cpmadugsum.r × ˙ = Y
cpmadugsum.1 1 ˙ = 1 Y
Assertion cpmadugsumlemC N Fin R CRing M B s 0 b B 0 s T M × ˙ Y i = 0 s i × ˙ X · ˙ T b i = Y i = 0 s i × ˙ X · ˙ T M × ˙ T b i

Proof

Step Hyp Ref Expression
1 cpmadugsum.a A = N Mat R
2 cpmadugsum.b B = Base A
3 cpmadugsum.p P = Poly 1 R
4 cpmadugsum.y Y = N Mat P
5 cpmadugsum.t T = N matToPolyMat R
6 cpmadugsum.x X = var 1 R
7 cpmadugsum.e × ˙ = mulGrp P
8 cpmadugsum.m · ˙ = Y
9 cpmadugsum.r × ˙ = Y
10 cpmadugsum.1 1 ˙ = 1 Y
11 eqid Base Y = Base Y
12 eqid 0 Y = 0 Y
13 crngring R CRing R Ring
14 3 ply1ring R Ring P Ring
15 13 14 syl R CRing P Ring
16 15 anim2i N Fin R CRing N Fin P Ring
17 4 matring N Fin P Ring Y Ring
18 16 17 syl N Fin R CRing Y Ring
19 18 3adant3 N Fin R CRing M B Y Ring
20 19 adantr N Fin R CRing M B s 0 b B 0 s Y Ring
21 ovexd N Fin R CRing M B s 0 b B 0 s 0 s V
22 5 1 2 3 4 mat2pmatbas N Fin R Ring M B T M Base Y
23 13 22 syl3an2 N Fin R CRing M B T M Base Y
24 23 adantr N Fin R CRing M B s 0 b B 0 s T M Base Y
25 16 3adant3 N Fin R CRing M B N Fin P Ring
26 4 matlmod N Fin P Ring Y LMod
27 25 26 syl N Fin R CRing M B Y LMod
28 27 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s Y LMod
29 eqid mulGrp P = mulGrp P
30 eqid Base P = Base P
31 29 30 mgpbas Base P = Base mulGrp P
32 15 3ad2ant2 N Fin R CRing M B P Ring
33 29 ringmgp P Ring mulGrp P Mnd
34 32 33 syl N Fin R CRing M B mulGrp P Mnd
35 34 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s mulGrp P Mnd
36 elfznn0 i 0 s i 0
37 36 adantl N Fin R CRing M B s 0 b B 0 s i 0 s i 0
38 13 3ad2ant2 N Fin R CRing M B R Ring
39 6 3 30 vr1cl R Ring X Base P
40 38 39 syl N Fin R CRing M B X Base P
41 40 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s X Base P
42 31 7 35 37 41 mulgnn0cld N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base P
43 3 ply1crng R CRing P CRing
44 43 anim2i N Fin R CRing N Fin P CRing
45 44 3adant3 N Fin R CRing M B N Fin P CRing
46 4 matsca2 N Fin P CRing P = Scalar Y
47 45 46 syl N Fin R CRing M B P = Scalar Y
48 47 eqcomd N Fin R CRing M B Scalar Y = P
49 48 fveq2d N Fin R CRing M B Base Scalar Y = Base P
50 49 eleq2d N Fin R CRing M B i × ˙ X Base Scalar Y i × ˙ X Base P
51 50 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base Scalar Y i × ˙ X Base P
52 42 51 mpbird N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base Scalar Y
53 simpll1 N Fin R CRing M B s 0 b B 0 s i 0 s N Fin
54 38 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s R Ring
55 simplrl N Fin R CRing M B s 0 b B 0 s i 0 s s 0
56 simprr N Fin R CRing M B s 0 b B 0 s b B 0 s
57 56 anim1i N Fin R CRing M B s 0 b B 0 s i 0 s b B 0 s i 0 s
58 1 2 3 4 5 m2pmfzmap N Fin R Ring s 0 b B 0 s i 0 s T b i Base Y
59 53 54 55 57 58 syl31anc N Fin R CRing M B s 0 b B 0 s i 0 s T b i Base Y
60 eqid Scalar Y = Scalar Y
61 eqid Base Scalar Y = Base Scalar Y
62 11 60 8 61 lmodvscl Y LMod i × ˙ X Base Scalar Y T b i Base Y i × ˙ X · ˙ T b i Base Y
63 28 52 59 62 syl3anc N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X · ˙ T b i Base Y
64 simpl1 N Fin R CRing M B s 0 b B 0 s N Fin
65 38 adantr N Fin R CRing M B s 0 b B 0 s R Ring
66 simprl N Fin R CRing M B s 0 b B 0 s s 0
67 eqid i 0 s i × ˙ X · ˙ T b i = i 0 s i × ˙ X · ˙ T b i
68 fzfid N Fin R Ring s 0 b B 0 s 0 s Fin
69 ovexd N Fin R Ring s 0 b B 0 s i 0 s i × ˙ X · ˙ T b i V
70 fvexd N Fin R Ring s 0 b B 0 s 0 Y V
71 67 68 69 70 fsuppmptdm N Fin R Ring s 0 b B 0 s finSupp 0 Y i 0 s i × ˙ X · ˙ T b i
72 64 65 66 56 71 syl31anc N Fin R CRing M B s 0 b B 0 s finSupp 0 Y i 0 s i × ˙ X · ˙ T b i
73 11 12 9 20 21 24 63 72 gsummulc2 N Fin R CRing M B s 0 b B 0 s Y i = 0 s T M × ˙ i × ˙ X · ˙ T b i = T M × ˙ Y i = 0 s i × ˙ X · ˙ T b i
74 4 matassa N Fin P CRing Y AssAlg
75 44 74 syl N Fin R CRing Y AssAlg
76 75 3adant3 N Fin R CRing M B Y AssAlg
77 76 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s Y AssAlg
78 15 adantl N Fin R CRing P Ring
79 78 33 syl N Fin R CRing mulGrp P Mnd
80 79 3adant3 N Fin R CRing M B mulGrp P Mnd
81 80 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s mulGrp P Mnd
82 31 7 81 37 41 mulgnn0cld N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base P
83 49 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s Base Scalar Y = Base P
84 82 83 eleqtrrd N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base Scalar Y
85 23 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s T M Base Y
86 11 60 61 8 9 assaassr Y AssAlg i × ˙ X Base Scalar Y T M Base Y T b i Base Y T M × ˙ i × ˙ X · ˙ T b i = i × ˙ X · ˙ T M × ˙ T b i
87 77 84 85 59 86 syl13anc N Fin R CRing M B s 0 b B 0 s i 0 s T M × ˙ i × ˙ X · ˙ T b i = i × ˙ X · ˙ T M × ˙ T b i
88 87 mpteq2dva N Fin R CRing M B s 0 b B 0 s i 0 s T M × ˙ i × ˙ X · ˙ T b i = i 0 s i × ˙ X · ˙ T M × ˙ T b i
89 88 oveq2d N Fin R CRing M B s 0 b B 0 s Y i = 0 s T M × ˙ i × ˙ X · ˙ T b i = Y i = 0 s i × ˙ X · ˙ T M × ˙ T b i
90 73 89 eqtr3d N Fin R CRing M B s 0 b B 0 s T M × ˙ Y i = 0 s i × ˙ X · ˙ T b i = Y i = 0 s i × ˙ X · ˙ T M × ˙ T b i