Metamath Proof Explorer


Theorem cpmadugsumlemC

Description: Lemma C for cpmadugsum . (Contributed by AV, 2-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a A = N Mat R
cpmadugsum.b B = Base A
cpmadugsum.p P = Poly 1 R
cpmadugsum.y Y = N Mat P
cpmadugsum.t T = N matToPolyMat R
cpmadugsum.x X = var 1 R
cpmadugsum.e × ˙ = mulGrp P
cpmadugsum.m · ˙ = Y
cpmadugsum.r × ˙ = Y
cpmadugsum.1 1 ˙ = 1 Y
Assertion cpmadugsumlemC N Fin R CRing M B s 0 b B 0 s T M × ˙ Y i = 0 s i × ˙ X · ˙ T b i = Y i = 0 s i × ˙ X · ˙ T M × ˙ T b i

Proof

Step Hyp Ref Expression
1 cpmadugsum.a A = N Mat R
2 cpmadugsum.b B = Base A
3 cpmadugsum.p P = Poly 1 R
4 cpmadugsum.y Y = N Mat P
5 cpmadugsum.t T = N matToPolyMat R
6 cpmadugsum.x X = var 1 R
7 cpmadugsum.e × ˙ = mulGrp P
8 cpmadugsum.m · ˙ = Y
9 cpmadugsum.r × ˙ = Y
10 cpmadugsum.1 1 ˙ = 1 Y
11 eqid Base Y = Base Y
12 eqid 0 Y = 0 Y
13 eqid + Y = + Y
14 crngring R CRing R Ring
15 3 ply1ring R Ring P Ring
16 14 15 syl R CRing P Ring
17 16 anim2i N Fin R CRing N Fin P Ring
18 4 matring N Fin P Ring Y Ring
19 17 18 syl N Fin R CRing Y Ring
20 19 3adant3 N Fin R CRing M B Y Ring
21 20 adantr N Fin R CRing M B s 0 b B 0 s Y Ring
22 ovexd N Fin R CRing M B s 0 b B 0 s 0 s V
23 5 1 2 3 4 mat2pmatbas N Fin R Ring M B T M Base Y
24 14 23 syl3an2 N Fin R CRing M B T M Base Y
25 24 adantr N Fin R CRing M B s 0 b B 0 s T M Base Y
26 17 3adant3 N Fin R CRing M B N Fin P Ring
27 4 matlmod N Fin P Ring Y LMod
28 26 27 syl N Fin R CRing M B Y LMod
29 28 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s Y LMod
30 16 3ad2ant2 N Fin R CRing M B P Ring
31 eqid mulGrp P = mulGrp P
32 31 ringmgp P Ring mulGrp P Mnd
33 30 32 syl N Fin R CRing M B mulGrp P Mnd
34 33 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s mulGrp P Mnd
35 elfznn0 i 0 s i 0
36 35 adantl N Fin R CRing M B s 0 b B 0 s i 0 s i 0
37 14 3ad2ant2 N Fin R CRing M B R Ring
38 eqid Base P = Base P
39 6 3 38 vr1cl R Ring X Base P
40 37 39 syl N Fin R CRing M B X Base P
41 40 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s X Base P
42 31 38 mgpbas Base P = Base mulGrp P
43 42 7 mulgnn0cl mulGrp P Mnd i 0 X Base P i × ˙ X Base P
44 34 36 41 43 syl3anc N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base P
45 3 ply1crng R CRing P CRing
46 45 anim2i N Fin R CRing N Fin P CRing
47 46 3adant3 N Fin R CRing M B N Fin P CRing
48 4 matsca2 N Fin P CRing P = Scalar Y
49 47 48 syl N Fin R CRing M B P = Scalar Y
50 49 eqcomd N Fin R CRing M B Scalar Y = P
51 50 fveq2d N Fin R CRing M B Base Scalar Y = Base P
52 51 eleq2d N Fin R CRing M B i × ˙ X Base Scalar Y i × ˙ X Base P
53 52 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base Scalar Y i × ˙ X Base P
54 44 53 mpbird N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base Scalar Y
55 simpll1 N Fin R CRing M B s 0 b B 0 s i 0 s N Fin
56 37 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s R Ring
57 simplrl N Fin R CRing M B s 0 b B 0 s i 0 s s 0
58 simprr N Fin R CRing M B s 0 b B 0 s b B 0 s
59 58 anim1i N Fin R CRing M B s 0 b B 0 s i 0 s b B 0 s i 0 s
60 1 2 3 4 5 m2pmfzmap N Fin R Ring s 0 b B 0 s i 0 s T b i Base Y
61 55 56 57 59 60 syl31anc N Fin R CRing M B s 0 b B 0 s i 0 s T b i Base Y
62 eqid Scalar Y = Scalar Y
63 eqid Base Scalar Y = Base Scalar Y
64 11 62 8 63 lmodvscl Y LMod i × ˙ X Base Scalar Y T b i Base Y i × ˙ X · ˙ T b i Base Y
65 29 54 61 64 syl3anc N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X · ˙ T b i Base Y
66 simpl1 N Fin R CRing M B s 0 b B 0 s N Fin
67 37 adantr N Fin R CRing M B s 0 b B 0 s R Ring
68 simprl N Fin R CRing M B s 0 b B 0 s s 0
69 eqid i 0 s i × ˙ X · ˙ T b i = i 0 s i × ˙ X · ˙ T b i
70 fzfid N Fin R Ring s 0 b B 0 s 0 s Fin
71 ovexd N Fin R Ring s 0 b B 0 s i 0 s i × ˙ X · ˙ T b i V
72 fvexd N Fin R Ring s 0 b B 0 s 0 Y V
73 69 70 71 72 fsuppmptdm N Fin R Ring s 0 b B 0 s finSupp 0 Y i 0 s i × ˙ X · ˙ T b i
74 66 67 68 58 73 syl31anc N Fin R CRing M B s 0 b B 0 s finSupp 0 Y i 0 s i × ˙ X · ˙ T b i
75 11 12 13 9 21 22 25 65 74 gsummulc2 N Fin R CRing M B s 0 b B 0 s Y i = 0 s T M × ˙ i × ˙ X · ˙ T b i = T M × ˙ Y i = 0 s i × ˙ X · ˙ T b i
76 4 matassa N Fin P CRing Y AssAlg
77 46 76 syl N Fin R CRing Y AssAlg
78 77 3adant3 N Fin R CRing M B Y AssAlg
79 78 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s Y AssAlg
80 16 adantl N Fin R CRing P Ring
81 80 32 syl N Fin R CRing mulGrp P Mnd
82 81 3adant3 N Fin R CRing M B mulGrp P Mnd
83 82 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s mulGrp P Mnd
84 83 36 41 43 syl3anc N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base P
85 51 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s Base Scalar Y = Base P
86 84 85 eleqtrrd N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base Scalar Y
87 24 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s T M Base Y
88 11 62 63 8 9 assaassr Y AssAlg i × ˙ X Base Scalar Y T M Base Y T b i Base Y T M × ˙ i × ˙ X · ˙ T b i = i × ˙ X · ˙ T M × ˙ T b i
89 79 86 87 61 88 syl13anc N Fin R CRing M B s 0 b B 0 s i 0 s T M × ˙ i × ˙ X · ˙ T b i = i × ˙ X · ˙ T M × ˙ T b i
90 89 mpteq2dva N Fin R CRing M B s 0 b B 0 s i 0 s T M × ˙ i × ˙ X · ˙ T b i = i 0 s i × ˙ X · ˙ T M × ˙ T b i
91 90 oveq2d N Fin R CRing M B s 0 b B 0 s Y i = 0 s T M × ˙ i × ˙ X · ˙ T b i = Y i = 0 s i × ˙ X · ˙ T M × ˙ T b i
92 75 91 eqtr3d N Fin R CRing M B s 0 b B 0 s T M × ˙ Y i = 0 s i × ˙ X · ˙ T b i = Y i = 0 s i × ˙ X · ˙ T M × ˙ T b i