Metamath Proof Explorer


Theorem cpmadumatpoly

Description: The product of the characteristic matrix of a given matrix and its adjunct represented as a polynomial over matrices. (Contributed by AV, 20-Nov-2019) (Revised by AV, 7-Dec-2019)

Ref Expression
Hypotheses cpmadumatpoly.a A = N Mat R
cpmadumatpoly.b B = Base A
cpmadumatpoly.p P = Poly 1 R
cpmadumatpoly.y Y = N Mat P
cpmadumatpoly.t T = N matToPolyMat R
cpmadumatpoly.r × ˙ = Y
cpmadumatpoly.m0 - ˙ = - Y
cpmadumatpoly.0 0 ˙ = 0 Y
cpmadumatpoly.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
cpmadumatpoly.s S = N ConstPolyMat R
cpmadumatpoly.m1 · ˙ = Y
cpmadumatpoly.1 1 ˙ = 1 Y
cpmadumatpoly.z Z = var 1 R
cpmadumatpoly.d D = Z · ˙ 1 ˙ - ˙ T M
cpmadumatpoly.j J = N maAdju P
cpmadumatpoly.w W = Base Y
cpmadumatpoly.q Q = Poly 1 A
cpmadumatpoly.x X = var 1 A
cpmadumatpoly.m2 ˙ = Q
cpmadumatpoly.e × ˙ = mulGrp Q
cpmadumatpoly.u U = N cPolyMatToMat R
cpmadumatpoly.i I = N pMatToMatPoly R
Assertion cpmadumatpoly N Fin R CRing M B s b B 0 s I D × ˙ J D = Q n 0 U G n ˙ n × ˙ X

Proof

Step Hyp Ref Expression
1 cpmadumatpoly.a A = N Mat R
2 cpmadumatpoly.b B = Base A
3 cpmadumatpoly.p P = Poly 1 R
4 cpmadumatpoly.y Y = N Mat P
5 cpmadumatpoly.t T = N matToPolyMat R
6 cpmadumatpoly.r × ˙ = Y
7 cpmadumatpoly.m0 - ˙ = - Y
8 cpmadumatpoly.0 0 ˙ = 0 Y
9 cpmadumatpoly.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
10 cpmadumatpoly.s S = N ConstPolyMat R
11 cpmadumatpoly.m1 · ˙ = Y
12 cpmadumatpoly.1 1 ˙ = 1 Y
13 cpmadumatpoly.z Z = var 1 R
14 cpmadumatpoly.d D = Z · ˙ 1 ˙ - ˙ T M
15 cpmadumatpoly.j J = N maAdju P
16 cpmadumatpoly.w W = Base Y
17 cpmadumatpoly.q Q = Poly 1 A
18 cpmadumatpoly.x X = var 1 A
19 cpmadumatpoly.m2 ˙ = Q
20 cpmadumatpoly.e × ˙ = mulGrp Q
21 cpmadumatpoly.u U = N cPolyMatToMat R
22 cpmadumatpoly.i I = N pMatToMatPoly R
23 eqid mulGrp P = mulGrp P
24 eqid + Y = + Y
25 eqeq1 n = z n = 0 z = 0
26 eqeq1 n = z n = s + 1 z = s + 1
27 breq2 n = z s + 1 < n s + 1 < z
28 fvoveq1 n = z b n 1 = b z 1
29 28 fveq2d n = z T b n 1 = T b z 1
30 2fveq3 n = z T b n = T b z
31 30 oveq2d n = z T M × ˙ T b n = T M × ˙ T b z
32 29 31 oveq12d n = z T b n 1 - ˙ T M × ˙ T b n = T b z 1 - ˙ T M × ˙ T b z
33 27 32 ifbieq2d n = z if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = if s + 1 < z 0 ˙ T b z 1 - ˙ T M × ˙ T b z
34 26 33 ifbieq2d n = z if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = if z = s + 1 T b s if s + 1 < z 0 ˙ T b z 1 - ˙ T M × ˙ T b z
35 25 34 ifbieq2d n = z if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = if z = 0 0 ˙ - ˙ T M × ˙ T b 0 if z = s + 1 T b s if s + 1 < z 0 ˙ T b z 1 - ˙ T M × ˙ T b z
36 35 cbvmptv n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = z 0 if z = 0 0 ˙ - ˙ T M × ˙ T b 0 if z = s + 1 T b s if s + 1 < z 0 ˙ T b z 1 - ˙ T M × ˙ T b z
37 9 36 eqtri G = z 0 if z = 0 0 ˙ - ˙ T M × ˙ T b 0 if z = s + 1 T b s if s + 1 < z 0 ˙ T b z 1 - ˙ T M × ˙ T b z
38 1 2 3 4 5 13 23 11 6 12 24 7 14 15 8 37 cpmadugsum N Fin R CRing M B s b B 0 s D × ˙ J D = Y n 0 n mulGrp P Z · ˙ G n
39 simp1 N Fin R CRing M B N Fin
40 39 ad3antrrr N Fin R CRing M B s b B 0 s n 0 N Fin
41 crngring R CRing R Ring
42 41 3ad2ant2 N Fin R CRing M B R Ring
43 42 ad3antrrr N Fin R CRing M B s b B 0 s n 0 R Ring
44 1 2 3 4 6 7 8 5 9 10 chfacfisfcpmat N Fin R Ring M B s b B 0 s G : 0 S
45 41 44 syl3anl2 N Fin R CRing M B s b B 0 s G : 0 S
46 45 anassrs N Fin R CRing M B s b B 0 s G : 0 S
47 46 ffvelrnda N Fin R CRing M B s b B 0 s n 0 G n S
48 10 21 5 m2cpminvid2 N Fin R Ring G n S T U G n = G n
49 40 43 47 48 syl3anc N Fin R CRing M B s b B 0 s n 0 T U G n = G n
50 49 eqcomd N Fin R CRing M B s b B 0 s n 0 G n = T U G n
51 50 oveq2d N Fin R CRing M B s b B 0 s n 0 n mulGrp P Z · ˙ G n = n mulGrp P Z · ˙ T U G n
52 51 mpteq2dva N Fin R CRing M B s b B 0 s n 0 n mulGrp P Z · ˙ G n = n 0 n mulGrp P Z · ˙ T U G n
53 52 oveq2d N Fin R CRing M B s b B 0 s Y n 0 n mulGrp P Z · ˙ G n = Y n 0 n mulGrp P Z · ˙ T U G n
54 53 eqeq2d N Fin R CRing M B s b B 0 s D × ˙ J D = Y n 0 n mulGrp P Z · ˙ G n D × ˙ J D = Y n 0 n mulGrp P Z · ˙ T U G n
55 fveq2 D × ˙ J D = Y n 0 n mulGrp P Z · ˙ T U G n I D × ˙ J D = I Y n 0 n mulGrp P Z · ˙ T U G n
56 3simpa N Fin R CRing M B N Fin R CRing
57 56 ad2antrr N Fin R CRing M B s b B 0 s N Fin R CRing
58 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 cpmadumatpolylem1 N Fin R CRing M B s b B 0 s U G B 0
59 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 cpmadumatpolylem2 N Fin R CRing M B s b B 0 s finSupp 0 A U G
60 3 4 16 19 20 18 1 2 17 22 23 13 11 5 pm2mp N Fin R CRing U G B 0 finSupp 0 A U G I Y n 0 n mulGrp P Z · ˙ T U G n = Q n 0 U G n ˙ n × ˙ X
61 57 58 59 60 syl12anc N Fin R CRing M B s b B 0 s I Y n 0 n mulGrp P Z · ˙ T U G n = Q n 0 U G n ˙ n × ˙ X
62 fvco3 G : 0 S n 0 U G n = U G n
63 62 eqcomd G : 0 S n 0 U G n = U G n
64 46 63 sylan N Fin R CRing M B s b B 0 s n 0 U G n = U G n
65 64 fveq2d N Fin R CRing M B s b B 0 s n 0 T U G n = T U G n
66 65 oveq2d N Fin R CRing M B s b B 0 s n 0 n mulGrp P Z · ˙ T U G n = n mulGrp P Z · ˙ T U G n
67 66 mpteq2dva N Fin R CRing M B s b B 0 s n 0 n mulGrp P Z · ˙ T U G n = n 0 n mulGrp P Z · ˙ T U G n
68 67 oveq2d N Fin R CRing M B s b B 0 s Y n 0 n mulGrp P Z · ˙ T U G n = Y n 0 n mulGrp P Z · ˙ T U G n
69 68 fveq2d N Fin R CRing M B s b B 0 s I Y n 0 n mulGrp P Z · ˙ T U G n = I Y n 0 n mulGrp P Z · ˙ T U G n
70 64 oveq1d N Fin R CRing M B s b B 0 s n 0 U G n ˙ n × ˙ X = U G n ˙ n × ˙ X
71 70 mpteq2dva N Fin R CRing M B s b B 0 s n 0 U G n ˙ n × ˙ X = n 0 U G n ˙ n × ˙ X
72 71 oveq2d N Fin R CRing M B s b B 0 s Q n 0 U G n ˙ n × ˙ X = Q n 0 U G n ˙ n × ˙ X
73 61 69 72 3eqtr4d N Fin R CRing M B s b B 0 s I Y n 0 n mulGrp P Z · ˙ T U G n = Q n 0 U G n ˙ n × ˙ X
74 55 73 sylan9eqr N Fin R CRing M B s b B 0 s D × ˙ J D = Y n 0 n mulGrp P Z · ˙ T U G n I D × ˙ J D = Q n 0 U G n ˙ n × ˙ X
75 74 ex N Fin R CRing M B s b B 0 s D × ˙ J D = Y n 0 n mulGrp P Z · ˙ T U G n I D × ˙ J D = Q n 0 U G n ˙ n × ˙ X
76 54 75 sylbid N Fin R CRing M B s b B 0 s D × ˙ J D = Y n 0 n mulGrp P Z · ˙ G n I D × ˙ J D = Q n 0 U G n ˙ n × ˙ X
77 76 reximdva N Fin R CRing M B s b B 0 s D × ˙ J D = Y n 0 n mulGrp P Z · ˙ G n b B 0 s I D × ˙ J D = Q n 0 U G n ˙ n × ˙ X
78 77 reximdva N Fin R CRing M B s b B 0 s D × ˙ J D = Y n 0 n mulGrp P Z · ˙ G n s b B 0 s I D × ˙ J D = Q n 0 U G n ˙ n × ˙ X
79 38 78 mpd N Fin R CRing M B s b B 0 s I D × ˙ J D = Q n 0 U G n ˙ n × ˙ X