| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cpmadumatpoly.a |
|
| 2 |
|
cpmadumatpoly.b |
|
| 3 |
|
cpmadumatpoly.p |
|
| 4 |
|
cpmadumatpoly.y |
|
| 5 |
|
cpmadumatpoly.t |
|
| 6 |
|
cpmadumatpoly.r |
|
| 7 |
|
cpmadumatpoly.m0 |
|
| 8 |
|
cpmadumatpoly.0 |
|
| 9 |
|
cpmadumatpoly.g |
|
| 10 |
|
cpmadumatpoly.s |
|
| 11 |
|
cpmadumatpoly.m1 |
|
| 12 |
|
cpmadumatpoly.1 |
|
| 13 |
|
cpmadumatpoly.z |
|
| 14 |
|
cpmadumatpoly.d |
|
| 15 |
|
cpmadumatpoly.j |
|
| 16 |
|
cpmadumatpoly.w |
|
| 17 |
|
cpmadumatpoly.q |
|
| 18 |
|
cpmadumatpoly.x |
|
| 19 |
|
cpmadumatpoly.m2 |
|
| 20 |
|
cpmadumatpoly.e |
|
| 21 |
|
cpmadumatpoly.u |
|
| 22 |
|
cpmadumatpoly.i |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
|
eqeq1 |
|
| 26 |
|
eqeq1 |
|
| 27 |
|
breq2 |
|
| 28 |
|
fvoveq1 |
|
| 29 |
28
|
fveq2d |
|
| 30 |
|
2fveq3 |
|
| 31 |
30
|
oveq2d |
|
| 32 |
29 31
|
oveq12d |
|
| 33 |
27 32
|
ifbieq2d |
|
| 34 |
26 33
|
ifbieq2d |
|
| 35 |
25 34
|
ifbieq2d |
|
| 36 |
35
|
cbvmptv |
|
| 37 |
9 36
|
eqtri |
|
| 38 |
1 2 3 4 5 13 23 11 6 12 24 7 14 15 8 37
|
cpmadugsum |
|
| 39 |
|
simp1 |
|
| 40 |
39
|
ad3antrrr |
|
| 41 |
|
crngring |
|
| 42 |
41
|
3ad2ant2 |
|
| 43 |
42
|
ad3antrrr |
|
| 44 |
1 2 3 4 6 7 8 5 9 10
|
chfacfisfcpmat |
|
| 45 |
41 44
|
syl3anl2 |
|
| 46 |
45
|
anassrs |
|
| 47 |
46
|
ffvelcdmda |
|
| 48 |
10 21 5
|
m2cpminvid2 |
|
| 49 |
40 43 47 48
|
syl3anc |
|
| 50 |
49
|
eqcomd |
|
| 51 |
50
|
oveq2d |
|
| 52 |
51
|
mpteq2dva |
|
| 53 |
52
|
oveq2d |
|
| 54 |
53
|
eqeq2d |
|
| 55 |
|
fveq2 |
|
| 56 |
|
3simpa |
|
| 57 |
56
|
ad2antrr |
|
| 58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
cpmadumatpolylem1 |
|
| 59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
cpmadumatpolylem2 |
|
| 60 |
3 4 16 19 20 18 1 2 17 22 23 13 11 5
|
pm2mp |
|
| 61 |
57 58 59 60
|
syl12anc |
|
| 62 |
|
fvco3 |
|
| 63 |
62
|
eqcomd |
|
| 64 |
46 63
|
sylan |
|
| 65 |
64
|
fveq2d |
|
| 66 |
65
|
oveq2d |
|
| 67 |
66
|
mpteq2dva |
|
| 68 |
67
|
oveq2d |
|
| 69 |
68
|
fveq2d |
|
| 70 |
64
|
oveq1d |
|
| 71 |
70
|
mpteq2dva |
|
| 72 |
71
|
oveq2d |
|
| 73 |
61 69 72
|
3eqtr4d |
|
| 74 |
55 73
|
sylan9eqr |
|
| 75 |
74
|
ex |
|
| 76 |
54 75
|
sylbid |
|
| 77 |
76
|
reximdva |
|
| 78 |
77
|
reximdva |
|
| 79 |
38 78
|
mpd |
|