Step |
Hyp |
Ref |
Expression |
1 |
|
cpmadumatpoly.a |
|
2 |
|
cpmadumatpoly.b |
|
3 |
|
cpmadumatpoly.p |
|
4 |
|
cpmadumatpoly.y |
|
5 |
|
cpmadumatpoly.t |
|
6 |
|
cpmadumatpoly.r |
|
7 |
|
cpmadumatpoly.m0 |
|
8 |
|
cpmadumatpoly.0 |
|
9 |
|
cpmadumatpoly.g |
|
10 |
|
cpmadumatpoly.s |
|
11 |
|
cpmadumatpoly.m1 |
|
12 |
|
cpmadumatpoly.1 |
|
13 |
|
cpmadumatpoly.z |
|
14 |
|
cpmadumatpoly.d |
|
15 |
|
cpmadumatpoly.j |
|
16 |
|
cpmadumatpoly.w |
|
17 |
|
cpmadumatpoly.q |
|
18 |
|
cpmadumatpoly.x |
|
19 |
|
cpmadumatpoly.m2 |
|
20 |
|
cpmadumatpoly.e |
|
21 |
|
cpmadumatpoly.u |
|
22 |
|
fvexd |
|
23 |
|
crngring |
|
24 |
23
|
anim2i |
|
25 |
24
|
3adant3 |
|
26 |
25
|
ad2antrr |
|
27 |
10 3 4
|
0elcpmat |
|
28 |
26 27
|
syl |
|
29 |
1 2 3 4 6 7 8 5 9 10
|
chfacfisfcpmat |
|
30 |
23 29
|
syl3anl2 |
|
31 |
30
|
anassrs |
|
32 |
1 2 10 21
|
cpm2mf |
|
33 |
26 32
|
syl |
|
34 |
|
ssidd |
|
35 |
|
nn0ex |
|
36 |
35
|
a1i |
|
37 |
10
|
ovexi |
|
38 |
37
|
a1i |
|
39 |
1 2 3 4 6 7 8 5 9
|
chfacffsupp |
|
40 |
39
|
anassrs |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
1 21 3 4 41 42
|
m2cpminv0 |
|
44 |
23 43
|
sylan2 |
|
45 |
44
|
3adant3 |
|
46 |
45
|
ad2antrr |
|
47 |
22 28 31 33 34 36 38 40 46
|
fsuppcor |
|