Metamath Proof Explorer


Theorem cpmadumatpolylem2

Description: Lemma 2 for cpmadumatpoly . (Contributed by AV, 20-Nov-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses cpmadumatpoly.a A = N Mat R
cpmadumatpoly.b B = Base A
cpmadumatpoly.p P = Poly 1 R
cpmadumatpoly.y Y = N Mat P
cpmadumatpoly.t T = N matToPolyMat R
cpmadumatpoly.r × ˙ = Y
cpmadumatpoly.m0 - ˙ = - Y
cpmadumatpoly.0 0 ˙ = 0 Y
cpmadumatpoly.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
cpmadumatpoly.s S = N ConstPolyMat R
cpmadumatpoly.m1 · ˙ = Y
cpmadumatpoly.1 1 ˙ = 1 Y
cpmadumatpoly.z Z = var 1 R
cpmadumatpoly.d D = Z · ˙ 1 ˙ - ˙ T M
cpmadumatpoly.j J = N maAdju P
cpmadumatpoly.w W = Base Y
cpmadumatpoly.q Q = Poly 1 A
cpmadumatpoly.x X = var 1 A
cpmadumatpoly.m2 ˙ = Q
cpmadumatpoly.e × ˙ = mulGrp Q
cpmadumatpoly.u U = N cPolyMatToMat R
Assertion cpmadumatpolylem2 N Fin R CRing M B s b B 0 s finSupp 0 A U G

Proof

Step Hyp Ref Expression
1 cpmadumatpoly.a A = N Mat R
2 cpmadumatpoly.b B = Base A
3 cpmadumatpoly.p P = Poly 1 R
4 cpmadumatpoly.y Y = N Mat P
5 cpmadumatpoly.t T = N matToPolyMat R
6 cpmadumatpoly.r × ˙ = Y
7 cpmadumatpoly.m0 - ˙ = - Y
8 cpmadumatpoly.0 0 ˙ = 0 Y
9 cpmadumatpoly.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
10 cpmadumatpoly.s S = N ConstPolyMat R
11 cpmadumatpoly.m1 · ˙ = Y
12 cpmadumatpoly.1 1 ˙ = 1 Y
13 cpmadumatpoly.z Z = var 1 R
14 cpmadumatpoly.d D = Z · ˙ 1 ˙ - ˙ T M
15 cpmadumatpoly.j J = N maAdju P
16 cpmadumatpoly.w W = Base Y
17 cpmadumatpoly.q Q = Poly 1 A
18 cpmadumatpoly.x X = var 1 A
19 cpmadumatpoly.m2 ˙ = Q
20 cpmadumatpoly.e × ˙ = mulGrp Q
21 cpmadumatpoly.u U = N cPolyMatToMat R
22 fvexd N Fin R CRing M B s b B 0 s 0 A V
23 crngring R CRing R Ring
24 23 anim2i N Fin R CRing N Fin R Ring
25 24 3adant3 N Fin R CRing M B N Fin R Ring
26 25 ad2antrr N Fin R CRing M B s b B 0 s N Fin R Ring
27 10 3 4 0elcpmat N Fin R Ring 0 Y S
28 26 27 syl N Fin R CRing M B s b B 0 s 0 Y S
29 1 2 3 4 6 7 8 5 9 10 chfacfisfcpmat N Fin R Ring M B s b B 0 s G : 0 S
30 23 29 syl3anl2 N Fin R CRing M B s b B 0 s G : 0 S
31 30 anassrs N Fin R CRing M B s b B 0 s G : 0 S
32 1 2 10 21 cpm2mf N Fin R Ring U : S B
33 26 32 syl N Fin R CRing M B s b B 0 s U : S B
34 ssidd N Fin R CRing M B s b B 0 s S S
35 nn0ex 0 V
36 35 a1i N Fin R CRing M B s b B 0 s 0 V
37 10 ovexi S V
38 37 a1i N Fin R CRing M B s b B 0 s S V
39 1 2 3 4 6 7 8 5 9 chfacffsupp N Fin R CRing M B s b B 0 s finSupp 0 Y G
40 39 anassrs N Fin R CRing M B s b B 0 s finSupp 0 Y G
41 eqid 0 A = 0 A
42 eqid 0 Y = 0 Y
43 1 21 3 4 41 42 m2cpminv0 N Fin R Ring U 0 Y = 0 A
44 23 43 sylan2 N Fin R CRing U 0 Y = 0 A
45 44 3adant3 N Fin R CRing M B U 0 Y = 0 A
46 45 ad2antrr N Fin R CRing M B s b B 0 s U 0 Y = 0 A
47 22 28 31 33 34 36 38 40 46 fsuppcor N Fin R CRing M B s b B 0 s finSupp 0 A U G