Metamath Proof Explorer


Theorem cpmadurid

Description: The right-hand fundamental relation of the adjugate (see madurid ) applied to the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019)

Ref Expression
Hypotheses cpmadurid.a A = N Mat R
cpmadurid.b B = Base A
cpmadurid.c C = N CharPlyMat R
cpmadurid.p P = Poly 1 R
cpmadurid.y Y = N Mat P
cpmadurid.x X = var 1 R
cpmadurid.t T = N matToPolyMat R
cpmadurid.s - ˙ = - Y
cpmadurid.m1 · ˙ = Y
cpmadurid.1 1 ˙ = 1 Y
cpmadurid.i I = X · ˙ 1 ˙ - ˙ T M
cpmadurid.j J = N maAdju P
cpmadurid.m2 × ˙ = Y
Assertion cpmadurid N Fin R CRing M B I × ˙ J I = C M · ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 cpmadurid.a A = N Mat R
2 cpmadurid.b B = Base A
3 cpmadurid.c C = N CharPlyMat R
4 cpmadurid.p P = Poly 1 R
5 cpmadurid.y Y = N Mat P
6 cpmadurid.x X = var 1 R
7 cpmadurid.t T = N matToPolyMat R
8 cpmadurid.s - ˙ = - Y
9 cpmadurid.m1 · ˙ = Y
10 cpmadurid.1 1 ˙ = 1 Y
11 cpmadurid.i I = X · ˙ 1 ˙ - ˙ T M
12 cpmadurid.j J = N maAdju P
13 cpmadurid.m2 × ˙ = Y
14 crngring R CRing R Ring
15 1 2 4 5 6 7 8 9 10 11 chmatcl N Fin R Ring M B I Base Y
16 14 15 syl3an2 N Fin R CRing M B I Base Y
17 4 ply1crng R CRing P CRing
18 17 3ad2ant2 N Fin R CRing M B P CRing
19 eqid Base Y = Base Y
20 eqid N maDet P = N maDet P
21 5 19 12 20 10 13 9 madurid I Base Y P CRing I × ˙ J I = N maDet P I · ˙ 1 ˙
22 16 18 21 syl2anc N Fin R CRing M B I × ˙ J I = N maDet P I · ˙ 1 ˙
23 3 1 2 4 5 20 8 6 9 7 10 chpmatval N Fin R CRing M B C M = N maDet P X · ˙ 1 ˙ - ˙ T M
24 11 a1i N Fin R CRing M B I = X · ˙ 1 ˙ - ˙ T M
25 24 eqcomd N Fin R CRing M B X · ˙ 1 ˙ - ˙ T M = I
26 25 fveq2d N Fin R CRing M B N maDet P X · ˙ 1 ˙ - ˙ T M = N maDet P I
27 23 26 eqtr2d N Fin R CRing M B N maDet P I = C M
28 27 oveq1d N Fin R CRing M B N maDet P I · ˙ 1 ˙ = C M · ˙ 1 ˙
29 22 28 eqtrd N Fin R CRing M B I × ˙ J I = C M · ˙ 1 ˙