Database
BASIC LINEAR ALGEBRA
Polynomial matrices
Constant polynomial matrices
cpmatel
Next ⟩
cpmatelimp
Metamath Proof Explorer
Ascii
Unicode
Theorem
cpmatel
Description:
Property of a constant polynomial matrix.
(Contributed by
AV
, 15-Nov-2019)
Ref
Expression
Hypotheses
cpmat.s
⊢
S
=
N
ConstPolyMat
R
cpmat.p
⊢
P
=
Poly
1
⁡
R
cpmat.c
⊢
C
=
N
Mat
P
cpmat.b
⊢
B
=
Base
C
Assertion
cpmatel
⊢
N
∈
Fin
∧
R
∈
V
∧
M
∈
B
→
M
∈
S
↔
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
⁡
i
M
j
⁡
k
=
0
R
Proof
Step
Hyp
Ref
Expression
1
cpmat.s
⊢
S
=
N
ConstPolyMat
R
2
cpmat.p
⊢
P
=
Poly
1
⁡
R
3
cpmat.c
⊢
C
=
N
Mat
P
4
cpmat.b
⊢
B
=
Base
C
5
1
2
3
4
cpmat
⊢
N
∈
Fin
∧
R
∈
V
→
S
=
m
∈
B
|
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
⁡
i
m
j
⁡
k
=
0
R
6
5
3adant3
⊢
N
∈
Fin
∧
R
∈
V
∧
M
∈
B
→
S
=
m
∈
B
|
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
⁡
i
m
j
⁡
k
=
0
R
7
6
eleq2d
⊢
N
∈
Fin
∧
R
∈
V
∧
M
∈
B
→
M
∈
S
↔
M
∈
m
∈
B
|
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
⁡
i
m
j
⁡
k
=
0
R
8
oveq
⊢
m
=
M
→
i
m
j
=
i
M
j
9
8
fveq2d
⊢
m
=
M
→
coe
1
⁡
i
m
j
=
coe
1
⁡
i
M
j
10
9
fveq1d
⊢
m
=
M
→
coe
1
⁡
i
m
j
⁡
k
=
coe
1
⁡
i
M
j
⁡
k
11
10
eqeq1d
⊢
m
=
M
→
coe
1
⁡
i
m
j
⁡
k
=
0
R
↔
coe
1
⁡
i
M
j
⁡
k
=
0
R
12
11
ralbidv
⊢
m
=
M
→
∀
k
∈
ℕ
coe
1
⁡
i
m
j
⁡
k
=
0
R
↔
∀
k
∈
ℕ
coe
1
⁡
i
M
j
⁡
k
=
0
R
13
12
2ralbidv
⊢
m
=
M
→
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
⁡
i
m
j
⁡
k
=
0
R
↔
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
⁡
i
M
j
⁡
k
=
0
R
14
13
elrab
⊢
M
∈
m
∈
B
|
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
⁡
i
m
j
⁡
k
=
0
R
↔
M
∈
B
∧
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
⁡
i
M
j
⁡
k
=
0
R
15
7
14
bitrdi
⊢
N
∈
Fin
∧
R
∈
V
∧
M
∈
B
→
M
∈
S
↔
M
∈
B
∧
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
⁡
i
M
j
⁡
k
=
0
R
16
15
3anibar
⊢
N
∈
Fin
∧
R
∈
V
∧
M
∈
B
→
M
∈
S
↔
∀
i
∈
N
∀
j
∈
N
∀
k
∈
ℕ
coe
1
⁡
i
M
j
⁡
k
=
0
R