Metamath Proof Explorer


Theorem cpmatelimp

Description: Implication of a set being a constant polynomial matrix. (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses cpmat.s S = N ConstPolyMat R
cpmat.p P = Poly 1 R
cpmat.c C = N Mat P
cpmat.b B = Base C
Assertion cpmatelimp N Fin R Ring M S M B i N j N k coe 1 i M j k = 0 R

Proof

Step Hyp Ref Expression
1 cpmat.s S = N ConstPolyMat R
2 cpmat.p P = Poly 1 R
3 cpmat.c C = N Mat P
4 cpmat.b B = Base C
5 1 2 3 4 cpmatpmat N Fin R Ring M S M B
6 5 3expa N Fin R Ring M S M B
7 1 2 3 4 cpmatel N Fin R Ring M B M S i N j N k coe 1 i M j k = 0 R
8 7 3expa N Fin R Ring M B M S i N j N k coe 1 i M j k = 0 R
9 8 biimpd N Fin R Ring M B M S i N j N k coe 1 i M j k = 0 R
10 9 impancom N Fin R Ring M S M B i N j N k coe 1 i M j k = 0 R
11 6 10 jcai N Fin R Ring M S M B i N j N k coe 1 i M j k = 0 R
12 11 ex N Fin R Ring M S M B i N j N k coe 1 i M j k = 0 R