Step |
Hyp |
Ref |
Expression |
1 |
|
cpmatsrngpmat.s |
|
2 |
|
cpmatsrngpmat.p |
|
3 |
|
cpmatsrngpmat.c |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
1 2 3 4 5 6
|
cpmatelimp2 |
|
8 |
2
|
ply1sca |
|
9 |
8
|
adantl |
|
10 |
9
|
adantr |
|
11 |
10
|
eqcomd |
|
12 |
11
|
fveq2d |
|
13 |
12
|
fveq1d |
|
14 |
|
ringgrp |
|
15 |
14
|
adantl |
|
16 |
|
eqid |
|
17 |
5 16
|
grpinvcl |
|
18 |
15 17
|
sylan |
|
19 |
13 18
|
eqeltrd |
|
20 |
19
|
ad5ant14 |
|
21 |
|
fveq2 |
|
22 |
21
|
eqeq2d |
|
23 |
22
|
adantl |
|
24 |
2
|
ply1ring |
|
25 |
24
|
ad3antlr |
|
26 |
|
simplr |
|
27 |
|
simpr |
|
28 |
25 26 27
|
3jca |
|
29 |
28
|
ad2antrr |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
3 4 30 31
|
matinvgcell |
|
33 |
29 32
|
syl |
|
34 |
|
fveq2 |
|
35 |
|
eqid |
|
36 |
25
|
adantr |
|
37 |
2
|
ply1lmod |
|
38 |
37
|
ad3antlr |
|
39 |
38
|
adantr |
|
40 |
6 35 36 39
|
asclghm |
|
41 |
9
|
fveq2d |
|
42 |
41
|
eleq2d |
|
43 |
42
|
biimpd |
|
44 |
43
|
ad2antrr |
|
45 |
44
|
imp |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
46 47 30
|
ghminv |
|
49 |
40 45 48
|
syl2anc |
|
50 |
49
|
eqcomd |
|
51 |
34 50
|
sylan9eqr |
|
52 |
33 51
|
eqtrd |
|
53 |
20 23 52
|
rspcedvd |
|
54 |
53
|
rexlimdva2 |
|
55 |
54
|
ralimdvva |
|
56 |
55
|
expimpd |
|
57 |
7 56
|
syld |
|
58 |
57
|
imp |
|
59 |
|
simpll |
|
60 |
|
simplr |
|
61 |
2 3
|
pmatring |
|
62 |
|
ringgrp |
|
63 |
61 62
|
syl |
|
64 |
63
|
adantr |
|
65 |
1 2 3 4
|
cpmatpmat |
|
66 |
65
|
3expa |
|
67 |
4 31
|
grpinvcl |
|
68 |
64 66 67
|
syl2anc |
|
69 |
1 2 3 4 5 6
|
cpmatel2 |
|
70 |
59 60 68 69
|
syl3anc |
|
71 |
58 70
|
mpbird |
|
72 |
71
|
ralrimiva |
|