Metamath Proof Explorer


Theorem cpmatinvcl

Description: The set of all constant polynomial matrices over a ring R is closed under inversion. (Contributed by AV, 17-Nov-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses cpmatsrngpmat.s S = N ConstPolyMat R
cpmatsrngpmat.p P = Poly 1 R
cpmatsrngpmat.c C = N Mat P
Assertion cpmatinvcl N Fin R Ring x S inv g C x S

Proof

Step Hyp Ref Expression
1 cpmatsrngpmat.s S = N ConstPolyMat R
2 cpmatsrngpmat.p P = Poly 1 R
3 cpmatsrngpmat.c C = N Mat P
4 eqid Base C = Base C
5 eqid Base R = Base R
6 eqid algSc P = algSc P
7 1 2 3 4 5 6 cpmatelimp2 N Fin R Ring x S x Base C i N j N a Base R i x j = algSc P a
8 2 ply1sca R Ring R = Scalar P
9 8 adantl N Fin R Ring R = Scalar P
10 9 adantr N Fin R Ring a Base R R = Scalar P
11 10 eqcomd N Fin R Ring a Base R Scalar P = R
12 11 fveq2d N Fin R Ring a Base R inv g Scalar P = inv g R
13 12 fveq1d N Fin R Ring a Base R inv g Scalar P a = inv g R a
14 ringgrp R Ring R Grp
15 14 adantl N Fin R Ring R Grp
16 eqid inv g R = inv g R
17 5 16 grpinvcl R Grp a Base R inv g R a Base R
18 15 17 sylan N Fin R Ring a Base R inv g R a Base R
19 13 18 eqeltrd N Fin R Ring a Base R inv g Scalar P a Base R
20 19 ad5ant14 N Fin R Ring x Base C i N j N a Base R i x j = algSc P a inv g Scalar P a Base R
21 fveq2 c = inv g Scalar P a algSc P c = algSc P inv g Scalar P a
22 21 eqeq2d c = inv g Scalar P a i inv g C x j = algSc P c i inv g C x j = algSc P inv g Scalar P a
23 22 adantl N Fin R Ring x Base C i N j N a Base R i x j = algSc P a c = inv g Scalar P a i inv g C x j = algSc P c i inv g C x j = algSc P inv g Scalar P a
24 2 ply1ring R Ring P Ring
25 24 ad3antlr N Fin R Ring x Base C i N j N P Ring
26 simplr N Fin R Ring x Base C i N j N x Base C
27 simpr N Fin R Ring x Base C i N j N i N j N
28 25 26 27 3jca N Fin R Ring x Base C i N j N P Ring x Base C i N j N
29 28 ad2antrr N Fin R Ring x Base C i N j N a Base R i x j = algSc P a P Ring x Base C i N j N
30 eqid inv g P = inv g P
31 eqid inv g C = inv g C
32 3 4 30 31 matinvgcell P Ring x Base C i N j N i inv g C x j = inv g P i x j
33 29 32 syl N Fin R Ring x Base C i N j N a Base R i x j = algSc P a i inv g C x j = inv g P i x j
34 fveq2 i x j = algSc P a inv g P i x j = inv g P algSc P a
35 eqid Scalar P = Scalar P
36 25 adantr N Fin R Ring x Base C i N j N a Base R P Ring
37 2 ply1lmod R Ring P LMod
38 37 ad3antlr N Fin R Ring x Base C i N j N P LMod
39 38 adantr N Fin R Ring x Base C i N j N a Base R P LMod
40 6 35 36 39 asclghm N Fin R Ring x Base C i N j N a Base R algSc P Scalar P GrpHom P
41 9 fveq2d N Fin R Ring Base R = Base Scalar P
42 41 eleq2d N Fin R Ring a Base R a Base Scalar P
43 42 biimpd N Fin R Ring a Base R a Base Scalar P
44 43 ad2antrr N Fin R Ring x Base C i N j N a Base R a Base Scalar P
45 44 imp N Fin R Ring x Base C i N j N a Base R a Base Scalar P
46 eqid Base Scalar P = Base Scalar P
47 eqid inv g Scalar P = inv g Scalar P
48 46 47 30 ghminv algSc P Scalar P GrpHom P a Base Scalar P algSc P inv g Scalar P a = inv g P algSc P a
49 40 45 48 syl2anc N Fin R Ring x Base C i N j N a Base R algSc P inv g Scalar P a = inv g P algSc P a
50 49 eqcomd N Fin R Ring x Base C i N j N a Base R inv g P algSc P a = algSc P inv g Scalar P a
51 34 50 sylan9eqr N Fin R Ring x Base C i N j N a Base R i x j = algSc P a inv g P i x j = algSc P inv g Scalar P a
52 33 51 eqtrd N Fin R Ring x Base C i N j N a Base R i x j = algSc P a i inv g C x j = algSc P inv g Scalar P a
53 20 23 52 rspcedvd N Fin R Ring x Base C i N j N a Base R i x j = algSc P a c Base R i inv g C x j = algSc P c
54 53 rexlimdva2 N Fin R Ring x Base C i N j N a Base R i x j = algSc P a c Base R i inv g C x j = algSc P c
55 54 ralimdvva N Fin R Ring x Base C i N j N a Base R i x j = algSc P a i N j N c Base R i inv g C x j = algSc P c
56 55 expimpd N Fin R Ring x Base C i N j N a Base R i x j = algSc P a i N j N c Base R i inv g C x j = algSc P c
57 7 56 syld N Fin R Ring x S i N j N c Base R i inv g C x j = algSc P c
58 57 imp N Fin R Ring x S i N j N c Base R i inv g C x j = algSc P c
59 simpll N Fin R Ring x S N Fin
60 simplr N Fin R Ring x S R Ring
61 2 3 pmatring N Fin R Ring C Ring
62 ringgrp C Ring C Grp
63 61 62 syl N Fin R Ring C Grp
64 63 adantr N Fin R Ring x S C Grp
65 1 2 3 4 cpmatpmat N Fin R Ring x S x Base C
66 65 3expa N Fin R Ring x S x Base C
67 4 31 grpinvcl C Grp x Base C inv g C x Base C
68 64 66 67 syl2anc N Fin R Ring x S inv g C x Base C
69 1 2 3 4 5 6 cpmatel2 N Fin R Ring inv g C x Base C inv g C x S i N j N c Base R i inv g C x j = algSc P c
70 59 60 68 69 syl3anc N Fin R Ring x S inv g C x S i N j N c Base R i inv g C x j = algSc P c
71 58 70 mpbird N Fin R Ring x S inv g C x S
72 71 ralrimiva N Fin R Ring x S inv g C x S