Metamath Proof Explorer


Theorem cpmatmcllem

Description: Lemma for cpmatmcl . (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses cpmatsrngpmat.s S = N ConstPolyMat R
cpmatsrngpmat.p P = Poly 1 R
cpmatsrngpmat.c C = N Mat P
Assertion cpmatmcllem N Fin R Ring x S y S i N j N c coe 1 P k N i x k P k y j c = 0 R

Proof

Step Hyp Ref Expression
1 cpmatsrngpmat.s S = N ConstPolyMat R
2 cpmatsrngpmat.p P = Poly 1 R
3 cpmatsrngpmat.c C = N Mat P
4 eqid Base C = Base C
5 1 2 3 4 cpmatelimp N Fin R Ring x S x Base C i N l N c coe 1 i x l c = 0 R
6 1 2 3 4 cpmatelimp N Fin R Ring y S y Base C l N j N c coe 1 l y j c = 0 R
7 6 adantr N Fin R Ring x Base C y S y Base C l N j N c coe 1 l y j c = 0 R
8 ralcom l N j N c coe 1 l y j c = 0 R j N l N c coe 1 l y j c = 0 R
9 r19.26-2 l N c coe 1 i x l c = 0 R coe 1 l y j c = 0 R l N c coe 1 i x l c = 0 R l N c coe 1 l y j c = 0 R
10 ralcom l N c coe 1 i x l c = 0 R coe 1 l y j c = 0 R c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R
11 9 10 bitr3i l N c coe 1 i x l c = 0 R l N c coe 1 l y j c = 0 R c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R
12 nfv c N Fin R Ring x Base C y Base C i N j N
13 nfra1 c c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R
14 12 13 nfan c N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R
15 simp-4r N Fin R Ring x Base C y Base C i N j N k N R Ring
16 eqid Base P = Base P
17 simplrl N Fin R Ring x Base C y Base C i N j N k N i N
18 simpr N Fin R Ring x Base C y Base C i N j N k N k N
19 simplrl N Fin R Ring x Base C y Base C i N j N x Base C
20 19 adantr N Fin R Ring x Base C y Base C i N j N k N x Base C
21 3 16 4 17 18 20 matecld N Fin R Ring x Base C y Base C i N j N k N i x k Base P
22 simplrr N Fin R Ring x Base C y Base C i N j N k N j N
23 simplrr N Fin R Ring x Base C y Base C i N j N y Base C
24 23 adantr N Fin R Ring x Base C y Base C i N j N k N y Base C
25 3 16 4 18 22 24 matecld N Fin R Ring x Base C y Base C i N j N k N k y j Base P
26 15 21 25 jca32 N Fin R Ring x Base C y Base C i N j N k N R Ring i x k Base P k y j Base P
27 26 adantlr N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R k N R Ring i x k Base P k y j Base P
28 oveq2 l = k i x l = i x k
29 28 fveq2d l = k coe 1 i x l = coe 1 i x k
30 29 fveq1d l = k coe 1 i x l c = coe 1 i x k c
31 30 eqeq1d l = k coe 1 i x l c = 0 R coe 1 i x k c = 0 R
32 fvoveq1 l = k coe 1 l y j = coe 1 k y j
33 32 fveq1d l = k coe 1 l y j c = coe 1 k y j c
34 33 eqeq1d l = k coe 1 l y j c = 0 R coe 1 k y j c = 0 R
35 31 34 anbi12d l = k coe 1 i x l c = 0 R coe 1 l y j c = 0 R coe 1 i x k c = 0 R coe 1 k y j c = 0 R
36 35 rspcva k N l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R coe 1 i x k c = 0 R coe 1 k y j c = 0 R
37 36 a1i N Fin R Ring x Base C y Base C i N j N c k N l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R coe 1 i x k c = 0 R coe 1 k y j c = 0 R
38 37 exp4b N Fin R Ring x Base C y Base C i N j N c k N l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R coe 1 i x k c = 0 R coe 1 k y j c = 0 R
39 38 com23 N Fin R Ring x Base C y Base C i N j N k N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R coe 1 i x k c = 0 R coe 1 k y j c = 0 R
40 39 imp31 N Fin R Ring x Base C y Base C i N j N k N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R coe 1 i x k c = 0 R coe 1 k y j c = 0 R
41 40 ralimdva N Fin R Ring x Base C y Base C i N j N k N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R c coe 1 i x k c = 0 R coe 1 k y j c = 0 R
42 41 impancom N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R k N c coe 1 i x k c = 0 R coe 1 k y j c = 0 R
43 42 imp N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R k N c coe 1 i x k c = 0 R coe 1 k y j c = 0 R
44 eqid 0 R = 0 R
45 eqid P = P
46 2 16 44 45 cply1mul R Ring i x k Base P k y j Base P c coe 1 i x k c = 0 R coe 1 k y j c = 0 R c coe 1 i x k P k y j c = 0 R
47 27 43 46 sylc N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R k N c coe 1 i x k P k y j c = 0 R
48 47 r19.21bi N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R k N c coe 1 i x k P k y j c = 0 R
49 48 an32s N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R c k N coe 1 i x k P k y j c = 0 R
50 49 mpteq2dva N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R c k N coe 1 i x k P k y j c = k N 0 R
51 50 oveq2d N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R c R k N coe 1 i x k P k y j c = R k N 0 R
52 ringmnd R Ring R Mnd
53 52 anim2i N Fin R Ring N Fin R Mnd
54 53 ancomd N Fin R Ring R Mnd N Fin
55 44 gsumz R Mnd N Fin R k N 0 R = 0 R
56 54 55 syl N Fin R Ring R k N 0 R = 0 R
57 56 ad4antr N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R c R k N 0 R = 0 R
58 51 57 eqtrd N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R c R k N coe 1 i x k P k y j c = 0 R
59 58 ex N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R c R k N coe 1 i x k P k y j c = 0 R
60 14 59 ralrimi N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R c R k N coe 1 i x k P k y j c = 0 R
61 simp-4r N Fin R Ring x Base C y Base C i N j N c R Ring
62 nnnn0 c c 0
63 62 adantl N Fin R Ring x Base C y Base C i N j N c c 0
64 2 ply1ring R Ring P Ring
65 64 ad4antlr N Fin R Ring x Base C y Base C i N j N k N P Ring
66 16 45 ringcl P Ring i x k Base P k y j Base P i x k P k y j Base P
67 65 21 25 66 syl3anc N Fin R Ring x Base C y Base C i N j N k N i x k P k y j Base P
68 67 ralrimiva N Fin R Ring x Base C y Base C i N j N k N i x k P k y j Base P
69 68 adantr N Fin R Ring x Base C y Base C i N j N c k N i x k P k y j Base P
70 simp-4l N Fin R Ring x Base C y Base C i N j N c N Fin
71 2 16 61 63 69 70 coe1fzgsumd N Fin R Ring x Base C y Base C i N j N c coe 1 P k N i x k P k y j c = R k N coe 1 i x k P k y j c
72 71 eqeq1d N Fin R Ring x Base C y Base C i N j N c coe 1 P k N i x k P k y j c = 0 R R k N coe 1 i x k P k y j c = 0 R
73 72 ralbidva N Fin R Ring x Base C y Base C i N j N c coe 1 P k N i x k P k y j c = 0 R c R k N coe 1 i x k P k y j c = 0 R
74 73 adantr N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R c coe 1 P k N i x k P k y j c = 0 R c R k N coe 1 i x k P k y j c = 0 R
75 60 74 mpbird N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R c coe 1 P k N i x k P k y j c = 0 R
76 75 ex N Fin R Ring x Base C y Base C i N j N c l N coe 1 i x l c = 0 R coe 1 l y j c = 0 R c coe 1 P k N i x k P k y j c = 0 R
77 11 76 syl5bi N Fin R Ring x Base C y Base C i N j N l N c coe 1 i x l c = 0 R l N c coe 1 l y j c = 0 R c coe 1 P k N i x k P k y j c = 0 R
78 77 expd N Fin R Ring x Base C y Base C i N j N l N c coe 1 i x l c = 0 R l N c coe 1 l y j c = 0 R c coe 1 P k N i x k P k y j c = 0 R
79 78 expr N Fin R Ring x Base C y Base C i N j N l N c coe 1 i x l c = 0 R l N c coe 1 l y j c = 0 R c coe 1 P k N i x k P k y j c = 0 R
80 79 com23 N Fin R Ring x Base C y Base C i N l N c coe 1 i x l c = 0 R j N l N c coe 1 l y j c = 0 R c coe 1 P k N i x k P k y j c = 0 R
81 80 imp31 N Fin R Ring x Base C y Base C i N l N c coe 1 i x l c = 0 R j N l N c coe 1 l y j c = 0 R c coe 1 P k N i x k P k y j c = 0 R
82 81 ralimdva N Fin R Ring x Base C y Base C i N l N c coe 1 i x l c = 0 R j N l N c coe 1 l y j c = 0 R j N c coe 1 P k N i x k P k y j c = 0 R
83 8 82 syl5bi N Fin R Ring x Base C y Base C i N l N c coe 1 i x l c = 0 R l N j N c coe 1 l y j c = 0 R j N c coe 1 P k N i x k P k y j c = 0 R
84 83 ex N Fin R Ring x Base C y Base C i N l N c coe 1 i x l c = 0 R l N j N c coe 1 l y j c = 0 R j N c coe 1 P k N i x k P k y j c = 0 R
85 84 com23 N Fin R Ring x Base C y Base C i N l N j N c coe 1 l y j c = 0 R l N c coe 1 i x l c = 0 R j N c coe 1 P k N i x k P k y j c = 0 R
86 85 impancom N Fin R Ring x Base C y Base C l N j N c coe 1 l y j c = 0 R i N l N c coe 1 i x l c = 0 R j N c coe 1 P k N i x k P k y j c = 0 R
87 86 imp N Fin R Ring x Base C y Base C l N j N c coe 1 l y j c = 0 R i N l N c coe 1 i x l c = 0 R j N c coe 1 P k N i x k P k y j c = 0 R
88 87 ralimdva N Fin R Ring x Base C y Base C l N j N c coe 1 l y j c = 0 R i N l N c coe 1 i x l c = 0 R i N j N c coe 1 P k N i x k P k y j c = 0 R
89 88 ex N Fin R Ring x Base C y Base C l N j N c coe 1 l y j c = 0 R i N l N c coe 1 i x l c = 0 R i N j N c coe 1 P k N i x k P k y j c = 0 R
90 89 expr N Fin R Ring x Base C y Base C l N j N c coe 1 l y j c = 0 R i N l N c coe 1 i x l c = 0 R i N j N c coe 1 P k N i x k P k y j c = 0 R
91 90 impd N Fin R Ring x Base C y Base C l N j N c coe 1 l y j c = 0 R i N l N c coe 1 i x l c = 0 R i N j N c coe 1 P k N i x k P k y j c = 0 R
92 7 91 syld N Fin R Ring x Base C y S i N l N c coe 1 i x l c = 0 R i N j N c coe 1 P k N i x k P k y j c = 0 R
93 92 com23 N Fin R Ring x Base C i N l N c coe 1 i x l c = 0 R y S i N j N c coe 1 P k N i x k P k y j c = 0 R
94 93 ex N Fin R Ring x Base C i N l N c coe 1 i x l c = 0 R y S i N j N c coe 1 P k N i x k P k y j c = 0 R
95 94 impd N Fin R Ring x Base C i N l N c coe 1 i x l c = 0 R y S i N j N c coe 1 P k N i x k P k y j c = 0 R
96 5 95 syld N Fin R Ring x S y S i N j N c coe 1 P k N i x k P k y j c = 0 R
97 96 imp32 N Fin R Ring x S y S i N j N c coe 1 P k N i x k P k y j c = 0 R