Metamath Proof Explorer


Theorem cpmatpmat

Description: A constant polynomial matrix is a polynomial matrix. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses cpmat.s S = N ConstPolyMat R
cpmat.p P = Poly 1 R
cpmat.c C = N Mat P
cpmat.b B = Base C
Assertion cpmatpmat N Fin R V M S M B

Proof

Step Hyp Ref Expression
1 cpmat.s S = N ConstPolyMat R
2 cpmat.p P = Poly 1 R
3 cpmat.c C = N Mat P
4 cpmat.b B = Base C
5 1 2 3 4 cpmat N Fin R V S = m B | i N j N k coe 1 i m j k = 0 R
6 5 eleq2d N Fin R V M S M m B | i N j N k coe 1 i m j k = 0 R
7 elrabi M m B | i N j N k coe 1 i m j k = 0 R M B
8 6 7 syl6bi N Fin R V M S M B
9 8 3impia N Fin R V M S M B