Metamath Proof Explorer


Theorem cpmatsrgpmat

Description: The set of all constant polynomial matrices over a ring R is a subring of the ring of all polynomial matrices over the ring R . (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses cpmatsrngpmat.s S = N ConstPolyMat R
cpmatsrngpmat.p P = Poly 1 R
cpmatsrngpmat.c C = N Mat P
Assertion cpmatsrgpmat N Fin R Ring S SubRing C

Proof

Step Hyp Ref Expression
1 cpmatsrngpmat.s S = N ConstPolyMat R
2 cpmatsrngpmat.p P = Poly 1 R
3 cpmatsrngpmat.c C = N Mat P
4 1 2 3 cpmatsubgpmat N Fin R Ring S SubGrp C
5 1 2 3 1elcpmat N Fin R Ring 1 C S
6 1 2 3 cpmatmcl N Fin R Ring x S y S x C y S
7 2 3 pmatring N Fin R Ring C Ring
8 eqid Base C = Base C
9 eqid 1 C = 1 C
10 eqid C = C
11 8 9 10 issubrg2 C Ring S SubRing C S SubGrp C 1 C S x S y S x C y S
12 7 11 syl N Fin R Ring S SubRing C S SubGrp C 1 C S x S y S x C y S
13 4 5 6 12 mpbir3and N Fin R Ring S SubRing C