Metamath Proof Explorer


Theorem cpmatsubgpmat

Description: The set of all constant polynomial matrices over a ring R is an additive subgroup of the ring of all polynomial matrices over the ring R . (Contributed by AV, 15-Nov-2019)

Ref Expression
Hypotheses cpmatsrngpmat.s S = N ConstPolyMat R
cpmatsrngpmat.p P = Poly 1 R
cpmatsrngpmat.c C = N Mat P
Assertion cpmatsubgpmat N Fin R Ring S SubGrp C

Proof

Step Hyp Ref Expression
1 cpmatsrngpmat.s S = N ConstPolyMat R
2 cpmatsrngpmat.p P = Poly 1 R
3 cpmatsrngpmat.c C = N Mat P
4 eqid Base C = Base C
5 1 2 3 4 cpmat N Fin R Ring S = m Base C | i N j N k coe 1 i m j k = 0 R
6 ssrab2 m Base C | i N j N k coe 1 i m j k = 0 R Base C
7 5 6 eqsstrdi N Fin R Ring S Base C
8 1 2 3 1elcpmat N Fin R Ring 1 C S
9 8 ne0d N Fin R Ring S
10 1 2 3 cpmatacl N Fin R Ring x S y S x + C y S
11 1 2 3 cpmatinvcl N Fin R Ring x S inv g C x S
12 r19.26 x S y S x + C y S inv g C x S x S y S x + C y S x S inv g C x S
13 10 11 12 sylanbrc N Fin R Ring x S y S x + C y S inv g C x S
14 2 3 pmatring N Fin R Ring C Ring
15 ringgrp C Ring C Grp
16 eqid + C = + C
17 eqid inv g C = inv g C
18 4 16 17 issubg2 C Grp S SubGrp C S Base C S x S y S x + C y S inv g C x S
19 14 15 18 3syl N Fin R Ring S SubGrp C S Base C S x S y S x + C y S inv g C x S
20 7 9 13 19 mpbir3and N Fin R Ring S SubGrp C